4.若a,b∈R,i是虛數(shù)單位,且b+(a-1)i=1+i,則a+b的值為( 。
A.1B.2C.3D.4

分析 直接利用復(fù)數(shù)相等的條件列式求得a,b的值,則答案可求.

解答 解:由b+(a-1)i=1+i,得
$\left\{\begin{array}{l}{b=1}\\{a-1=1}\end{array}\right.$,∴a=2,b=1.
∴a+b=2+1=3.
故選:C.

點(diǎn)評 本題考查復(fù)數(shù)的基本概念,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函數(shù)f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若f(x)有兩個(gè)不同的極值點(diǎn)m,n(m<n),且2(m+n)≤mn-1,記F(x)=e2f(x)+g(x),求F(m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,且$\overrightarrow a$與$\overrightarrow c$的夾角為60°,$\overrightarrow a$與$\overrightarrow b$的夾角為θ,$|{\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,則tanθ=( 。
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.2cos275°-1的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(x-$\sqrt{3}$)2017=a0x2017+a1x2016+a2x2015+…+a2016+a2017,則(a0+a2+…+a20162-(a1+a3+…+a20172的值為-22017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=2,則|$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為( 。
A.3π+$\sqrt{3}$B.3π+$\sqrt{3}$+1C.5π+$\sqrt{3}$D.5π+$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2lnx-2mx+x2(m>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)m≥$\frac{{3\sqrt{2}}}{2}$時(shí),若函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的圖象與x軸交于A,B兩點(diǎn),其橫坐標(biāo)分別為x1,x2(x1<x2),線段AB的中點(diǎn)的橫坐標(biāo)為x0,且x1,x2恰為函數(shù)h(x)=lnx-cx2-bx零的點(diǎn),求證:(x1-x2)h'(x0)≥-$\frac{2}{3}$+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)z=$\frac{{{i^{2017}}}}{1-i}$(i是虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案