【題目】現(xiàn)有正整數(shù)構(gòu)成的數(shù)表如下:

第一行:1

第二行:1 2

第三行:1 1 2 3

第四行:1 1 2 1 1 2 3 4

第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5

…… …… ……

行:先抄寫(xiě)第1行,接著按原序抄寫(xiě)第2行,然后按原序抄寫(xiě)第3行,...,直至按原序抄寫(xiě)第行,最后添上數(shù).(如第四行,先抄寫(xiě)第一行的數(shù)1,接著按原序抄寫(xiě)第二行的數(shù)1,2,接著按原序抄寫(xiě)第三行的數(shù)1,1,2,3,最后添上數(shù)4).

將按照上述方式寫(xiě)下的第個(gè)數(shù)記作(如

(1)用表示數(shù)表第行的數(shù)的個(gè)數(shù),求數(shù)列的前項(xiàng)和

(2)第8行中的數(shù)是否超過(guò)73個(gè)?若是,用表示第8行中的第73個(gè)數(shù),試求的值;若不是,請(qǐng)說(shuō)明理由;

(3)令,求的值.

【答案】(1)(2)(3)

【解析】試題分析:(1)根據(jù)題意可以寫(xiě)出當(dāng)時(shí), ,

,于是,即,所以,故;(2)根據(jù),第8行中共有個(gè)數(shù),所以,第8行中的數(shù)超過(guò)73個(gè),所以,從而, ,由 ,所以,按上述順序依次寫(xiě)下的第73個(gè)數(shù)應(yīng)是第7行的第個(gè)數(shù),同上過(guò)程知,所以, .(3)由于數(shù)表的前行共有個(gè)數(shù),于是,先計(jì)算.在前個(gè)數(shù)中,共有1個(gè),2個(gè), 個(gè),……, 個(gè),……, 個(gè)1,因此 ,則 ,兩式相減,得 .

試題解析:(1)當(dāng)時(shí),

,

于是,即,又, ,

所以

.

(2)由得第8行中共有個(gè)數(shù),

所以,第8行中的數(shù)超過(guò)73個(gè),

,

從而, ,

,

所以,按上述順序依次寫(xiě)下的第73個(gè)數(shù)應(yīng)是第7行的第個(gè)數(shù),同上過(guò)程知,

所以, .

(3)由于數(shù)表的前行共有個(gè)數(shù),于是,先計(jì)算.

在前個(gè)數(shù)中,共有1個(gè),2個(gè), 個(gè),……, 個(gè),……, 個(gè)1,

因此 ,

,

兩式相減,得 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤)的部分圖象,其圖象與y軸交于點(diǎn)(0,
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若 , 求-的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)= , g(x)是二次函數(shù),若f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是( 。
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=kx2+2x(k為實(shí)常數(shù))為奇函數(shù),函數(shù)g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)當(dāng)a=時(shí),g(x)≤t2﹣2mt+1對(duì)所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為

)求滿(mǎn)足的概率;

)設(shè)三條線段的長(zhǎng)分別為5,求這三條線段能?chē)傻妊切危ê冗吶切危┑母怕剩?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:橢圓與雙曲線有相同的焦點(diǎn)、,它們?cè)?/span>軸右側(cè)有兩個(gè)交點(diǎn)、,滿(mǎn)足.將直線左側(cè)的橢圓部分(含, 兩點(diǎn))記為曲線,直線右側(cè)的雙曲線部分(不含 兩點(diǎn))記為曲線.以為端點(diǎn)作一條射線,分別交于點(diǎn),交于點(diǎn)(點(diǎn)在第一象限),設(shè)此時(shí).

(1)求的方程;

(2)證明: ,并探索直線斜率之間的關(guān)系;

(3)設(shè)直線于點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù), .

1)求的單調(diào)區(qū)間與極值;

2)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在正方體ABCD﹣A1B1C1D1中,E為棱DD1的中點(diǎn)
(1)求證:BD1∥平面AEC
(2)求證:AC⊥BD1

查看答案和解析>>

同步練習(xí)冊(cè)答案