7.過拋物線y2=4x的焦點F且斜率為$2\sqrt{2}$的直線交拋物線于A,B兩點(xA>xB),則$\frac{{|{AF}|}}{{|{BF}|}}$=( 。
A.$\frac{3}{2}$B.$\frac{3}{4}$C.3D.2

分析 設(shè)出A、B坐標(biāo),利用拋物線焦半徑公式求出|AB|,結(jié)合拋物線的性質(zhì)x1x2=2,求出x1=2,x2=$\frac{1}{2}$,然后求比值$\frac{{|{AF}|}}{{|{BF}|}}$即可.

解答 解:設(shè)A(x1,y1),B(x2,y2),則斜率為$2\sqrt{2}$,sinα=$\frac{2\sqrt{2}}{3}$
|AB|=x1+x2+p=$\frac{2p}{(\frac{2\sqrt{2}}{3})^{2}}$,
∴x1+x2=$\frac{5p}{4}$=$\frac{5}{2}$,
又x1x2=2可得x1=2,x2=$\frac{1}{2}$,
∴$\frac{{|{AF}|}}{{|{BF}|}}$=$\frac{2+1}{\frac{1}{2}+1}$=2.
故選D.

點評 本題考查直線與拋物線的位置關(guān)系,拋物線的簡單性質(zhì),特別是焦點弦問題,解題時要善于運用拋物線的定義解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知離心率是$\sqrt{5}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點與拋物線y2=20x的焦點重合,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1}{1+i}$在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,已知圓C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ為參數(shù)),點P在直線l:x+y-4=0上,以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.
( I)求圓C和直線l的極坐標(biāo)方程;
( II)射線OP交圓C于R,點Q在射線OP上,且滿足|OP|2=|OR|•|OQ|,求Q點軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(xi,yi)(i=1,2,…,6),如表所示:
試銷單價x(元)456789
產(chǎn)品銷量y(件)q8483807568
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)(xi,yi)對應(yīng)的殘差的絕對值$|\widehat{y_i}-{y_i}|≤1$時,則將銷售數(shù)據(jù)(xi,yi)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)ξ的分布列和數(shù)學(xué)期望E(ξ).
(參考公式:線性回歸方程中$\widehatb$,$\widehata$的最小二乘估計分別為$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}滿足a1=2,且$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$,則{an}的通項公式為an=n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“x2+5x-6>0”是“x>2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,如果目標(biāo)函數(shù)z=x+ay的最大值為$\frac{16}{3}$,則實數(shù)a的值為( 。
A.3B.$\frac{14}{3}$C.3或$\frac{14}{3}$D.3或$-\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若圓x2+y2-2x-4y+1=0關(guān)于直線ax-by=0(a>0,b>0)對稱,則雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1的漸近線方程為( 。
A.y=2xB.$y=\frac{1}{2}x$C.y=±2xD.$y=±\frac{1}{2}x$

查看答案和解析>>

同步練習(xí)冊答案