3.在正四棱錐P-ABCD中,O為正方形ABCD的中心,$\overrightarrow{PE}$=λ$\overrightarrow{EO}$(2≤λ≤4),且平面ABE與直線PD交于F,$\overrightarrow{PF}$=f(λ)$\overrightarrow{PD}$,則( 。
A.f(λ)=$\frac{λ}{λ+2}$B.f(λ)=$\frac{2λ}{λ+6}$C.f(λ)=$\frac{3λ}{λ+7}$D.f(λ)=$\frac{4λ}{λ+9}$

分析 在平面ABE延長(zhǎng)BE與直線PD交于F,過F作FG垂直于PO交于G,根據(jù)相識(shí)三角形成比例關(guān)系可求解.

解答 解:由題意:P-ABCD是正四棱錐,O為正方形ABCD的中心,則OP⊥平面ABCD,$\overrightarrow{PE}$=λ$\overrightarrow{EO}$(2≤λ≤4),即E是PO上的點(diǎn),在平面ABE延長(zhǎng)BE與直線PD交于F,過F作FG垂直于PO交于G,
可得:$\frac{PF}{PD}=\frac{FG}{OD}=\frac{PG}{PO}=\frac{GE}{EO}=\frac{PG+GE}{PO+EO}=\frac{λ}{2+λ}$.
故選A.

點(diǎn)評(píng) 本題考查了根據(jù)相識(shí)三角形成比例關(guān)系.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.給出下列四個(gè)說(shuō)法:
①f(x)=x0與g(x)=1是同一個(gè)函數(shù);
②y=f(x),x∈R與y=f(x+1),x∈R可能是同一個(gè)函數(shù);
③y=f(x),x∈R與y=f(t),t∈R是同一個(gè)函數(shù);
④定義域和值域相同的函數(shù)是同一個(gè)函數(shù).
其中正確的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x)=sinx+cosx,則f($\frac{π}{12}$)的值為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù) f(x)=ln(ex+a)(a為常數(shù),e為自然對(duì)數(shù)的底數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)g(x)=λf(x)+sin x在區(qū)間[-1,1]上是減函數(shù).
(1)求實(shí)數(shù)a的值;
(2)若在x∈[-1,1]上g(x)≤t2+λt+1恒成立,求實(shí)數(shù)t的取值范圍;
(3)討論關(guān)于x的方程$\frac{lnx}{f(x)}$=x2-2ex+m的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.40B.48C.56D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知奇函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+2x(x>0)\\ 0,(x=0)\\{x^2}+mx(x<0)\end{array}$
(1)在給出的直角坐標(biāo)系中畫出y=f(x)的圖象,并求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[2a-1,a+1]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l:y=x+m,圓O:x2+y2-4=0,圓C:x2+y2+2ax-2ay+2a2-4a=0(0<a≤4).
(1)若a=3,圓O與圓C交于M,N兩點(diǎn),試求線段|MN|的長(zhǎng).
(2)直線 l與圓C相切,且直線l在圓C心的下方,當(dāng)0<a≤4時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.棱長(zhǎng)為2的正方體的所有頂點(diǎn)都在球O的球面上,則球O的體積為4$\sqrt{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}$,則2y•($\frac{1}{4}$)x的最小值是( 。
A.1B.2C.8D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案