9.四邊形ABCD是正方形,△PAB與△PAD均是以A為直角頂點的等腰直角三角形,點F是PB的中點,點E是邊BC上的任意一點.
(1)求證:AF⊥EF;    
(2)求二面角A-PC-B的平面角.

分析 (1)由已知得PA⊥AD,PA⊥AB,AB⊥BC,從而PA⊥BC,進而BC⊥面PAB,又AF⊥PB,由此能證明AF⊥EF.
(2)以A為原點,AD為x軸,AB為y軸,P為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-PC-B的平面角.

解答 (1)證明:∵四邊形ABCD是正方形,△PAB與△PAD均是以A為直角頂點的等腰直角三角形,
∴PA⊥AD,PA⊥AB,又AD∩AB=A,AB⊥BC,
∴PA⊥平面ABCD,又BC?面ABCD,∴PA⊥BC,
∵AB∩PA=A,∴BC⊥面PAB,
∴BC⊥AF,
∵△PAB是以A為直角頂點的等腰直角三角形,F(xiàn)是PB中點,
∴AF⊥PB,
又PB∩BC=B,∴AF⊥平面PBC,
∵EF?平面PBC,∴AF⊥EF.
(2)解:以A為原點,AD為x軸,AB為y軸,P為z軸,
建立空間直角坐標(biāo)系,
設(shè)AB=1,則A(0,0,0),B(0,1,0),C(1,1,0),P(0,0,1),
$\overrightarrow{AP}$=(0,0,1),$\overrightarrow{AC}$=(1,1,0),
設(shè)平面APC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AP}=z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,0),
$\overrightarrow{PB}$=(0,1,-1),$\overrightarrow{PC}$=(1,1,-1),
設(shè)平面PBC的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=b-c=0}\\{\overrightarrow{m}•\overrightarrow{PC}=a+b-c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,1),
|cos<$\overrightarrow{n},\overrightarrow{m}$>|=|$\frac{-1}{\sqrt{2}×\sqrt{2}}$|=$\frac{1}{2}$,
∴<$\overrightarrow{n},\overrightarrow{m}$>=60°,
∴二面角A-PC-B的平面角為60°.

點評 本題考查空間線面關(guān)系以及二面角的求解,建立空間坐標(biāo)系,求出平面的法向量,利用向量法是解決本題的關(guān)鍵.考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.甲乙兩隊進行排球比賽,已知在每一局比賽中甲隊獲勝的概率是$\frac{3}{5}$,沒有平局.若采用三局兩勝制比賽,即先勝兩局者獲勝且比賽結(jié)束,則甲隊獲勝的概率等于(  )
A.$\frac{3}{5}$B.$\frac{13}{25}$C.$\frac{38}{75}$D.$\frac{81}{125}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐S-ABCD中,底面ABCD是邊長為1的菱形,$∠ABC=\frac{π}{4},SA⊥$底面ABCD,SA=2,M為SA的中點.
(1)求異面直線AB與MD所成角的大小;
(2)求直線AS與平面SCD所成角的正弦值;
(3)求平面SAB與平面SCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面A1ABB1,且AA1=AB=2
(1)求證:AB⊥BC;
(2)若AC=2$\sqrt{2}$,求銳二面角A-A1C-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在邊長為1的正方形組成的網(wǎng)格中,畫出的是一個幾何體的三視圖,則該幾何體的體積是(  )
A.9B.$\frac{27}{2}$C.18D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知底面為邊長為2的正方形,側(cè)棱長為1的直四棱柱ABCD-A1B1C1D1中,P是面A1B1C1D1上的動點.給出以下四個結(jié)論中,正確的個數(shù)是( 。
①與點D距離為$\sqrt{3}$的點P形成一條曲線,則該曲線的長度是$\frac{π}{2}$;
②若DP∥面ACB1,則DP與面ACC1A1所成角的正切值取值范圍是$[{\frac{{\sqrt{6}}}{3},+∞})$;
③若$DP=\sqrt{3}$,則DP在該四棱柱六個面上的正投影長度之和的最大值為$6\sqrt{2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的表面積為( 。
A.2(1+$\sqrt{2}$+$\sqrt{3}$)B.2(1+2$\sqrt{2}$+$\sqrt{3}$)C.4+2$\sqrt{6}$D.4(1+$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若某幾何體的三視圖(單位:cm)如圖所示,且俯視圖為正三角形,則該幾何體的體積等于( 。
A.3$\sqrt{3}$cm3B.6$\sqrt{3}$cm3C.$\frac{15}{2}\sqrt{3}$cm3D.9$\sqrt{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AB⊥平面BCP,CD∥AB,AB=BC=CP=BP=2,CD=1.
(1)求點B到平面DCP的距離;
(2)點M為線段AB上一點(含端點),設(shè)直線MP與平面DCP所成角為α,求sinα的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案