已知點A(-1,0)、B(1,3),向量
a
=(2k-1,2),若
AB
a
,則實數(shù)k的值為
 
分析:求出
AB
向量,利用
AB
a
,轉化為向量的數(shù)量積為0的坐標運算,即可求出實數(shù)k的值.
解答:解:由題意
AB
=(2,3),向量
a
=(2k-1,2),
AB
a
,則2×(2k-1)+6=0
解得k=-1
故答案為:-1
點評:本題是基礎題,考查向量的坐標運算,向量的數(shù)量積,考查垂直的充要條件的應用,是?碱}.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連接BC并延長至D,使得|CD|=|BC|,求AC與OD的交點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,0),B(0,2),點P是圓(x-1)2+y2=1上任意一點,則△PAB面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標原點,其中an、bn分別為等差數(shù)列和等比數(shù)列,若P1是線段AB的中點,設等差數(shù)列公差為d,等比數(shù)列公比為q,當d與q滿足條件
 
時,點P1,P2,P3,…,Pn,…共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,0),B(1,0),M是平面上的一動點,過M作直線l:x=4的垂線,垂足為N,且|MN|=2|MB|.
(1)求M點的軌跡C的方程;
(2)當M點在C上移動時,|MN|能否成為|MA|與|MB|的等比中項?若能求出M點的坐標,若不能說明理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點A到圖形C上每一個點的距離的最小值稱為點A到圖形C的距離.已知點A(1,0),圓C:x2+2x+y2=0,那么平面內(nèi)到圓C的距離與到點A的距離之差為1的點的軌跡是( 。

查看答案和解析>>

同步練習冊答案