【題目】已知等差數(shù)列的前項(xiàng)和為,且.

1)求數(shù)列的前項(xiàng)和;

2)是否存在正整數(shù),,使得,成等比數(shù)列?若存在,求出所有的,;若不存在,說明理由;

3)設(shè),若對一切正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2)不存在;(3.

【解析】

1)設(shè)等差數(shù)列的公差為,由題意得,,聯(lián)立解得,即可求出數(shù)列的通項(xiàng)公式,進(jìn)而求得

2)結(jié)合求出,,利用等比數(shù)列的性質(zhì)得到,通過相應(yīng)的轉(zhuǎn)換得到,均為偶數(shù),設(shè),,將等式轉(zhuǎn)化為,通過放縮可得與上式矛盾,所以不存在正整數(shù)使,,成等比數(shù)列。

3)分為偶數(shù)和為奇數(shù)兩種情況討論,當(dāng)為偶數(shù)時(shí),可設(shè);當(dāng)為奇數(shù)時(shí),設(shè),再對進(jìn)行化簡求值,分離參數(shù),通過恒成立問題進(jìn)一步確定取值范圍。

1)設(shè)等差數(shù)列的公差為

由題意知,①

,②,聯(lián)立①②得,

所以數(shù)列的通項(xiàng)公式為,即

2,,,

當(dāng),成等比數(shù)列時(shí),有,

,

,,,

,

、均為正整數(shù),為整數(shù),為整數(shù),

,

一定為偶數(shù),整理得,則一定為偶數(shù),

設(shè),均為正整數(shù),,

轉(zhuǎn)化為,

,令,則且為整數(shù),

,則,

(放縮可得),與上式矛盾,

所以不存在正整數(shù)、使,成等比數(shù)列。

3)由(1)得,

當(dāng)為偶數(shù)時(shí),設(shè)

,

則不等式等價(jià)于對一切正整數(shù)恒成立,

,設(shè),則,單調(diào)遞增,,

當(dāng)為奇數(shù)時(shí),設(shè),,

代入不等式,得,即,

,的最大值為-4,

綜上所述,的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校某班在一次數(shù)學(xué)測驗(yàn)中,全班N名學(xué)生的數(shù)學(xué)成績的頻率分布直方圖如下,已知分?jǐn)?shù)在110~120的學(xué)生有14人.

(1)求總?cè)藬?shù)N和分?jǐn)?shù)在120~125的人數(shù)n;

(2)利用頻率分布直方圖,估算該班學(xué)生數(shù)學(xué)成績的眾數(shù)和中位數(shù)各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過兩點(diǎn)A(3,3),B(4,2),且圓心C在直線上。

(Ⅰ)求圓C的方程;

(Ⅱ)直線過點(diǎn)D(2,4),且與圓C相切,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱載堉(1536~1611),是中國明代一位杰出的音樂家、數(shù)學(xué)家和天文歷算家,他的著作《律學(xué)新說》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一組音(八度)分成十二個(gè)半音音程的律制,各相鄰兩律之間的頻率之比完全相等,亦稱“十二等程律”.即一個(gè)八度13個(gè)音,相鄰兩個(gè)音之間的頻率之比相等,且最后一個(gè)音是最初那個(gè)音的頻率的2倍.設(shè)第三個(gè)音的頻率為,第七個(gè)音的頻率為,則

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓及點(diǎn),若直線與橢圓交于點(diǎn),且為坐標(biāo)原點(diǎn)),橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若斜率為的直線交橢圓于不同的兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考最大的特點(diǎn)就是取消文理分科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對全文(選擇政治、歷史、地理)的選擇是否與性別有關(guān),從某學(xué)校高一年級的1000名學(xué)生中隨機(jī)抽取男生,女生各25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全文的人數(shù)比不選全文的人數(shù)少10.

1)估計(jì)在男生中,選擇全文的概率.

2)請完成下面的列聯(lián)表;并估計(jì)有多大把握認(rèn)為選擇全文與性別有關(guān),并說明理由;

選擇全文

不選擇全文

合計(jì)

男生

5

女生

合計(jì)

附:,其中.

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線、為焦點(diǎn),且過點(diǎn)

1)求雙曲線與其漸近線的方程;

2)是否存在斜率為2的直線與雙曲線右支相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)).若存在,求直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學(xué)生對學(xué)校某項(xiàng)教改試驗(yàn)的意見,用系統(tǒng)抽樣的方法從中抽取一個(gè)容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

同步練習(xí)冊答案