【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;

(2)根據(jù)所給的獨(dú)立檢驗(yàn)臨界值表,你最多能有多少把握認(rèn)為性別與休閑方式有關(guān)系?附:獨(dú)立檢驗(yàn)臨界值表

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)見解析(2)見解析

【解析】

(1)根據(jù)調(diào)查數(shù)據(jù),即可得到列聯(lián)表;(2)根據(jù)列聯(lián)表中所給的數(shù)據(jù)做出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較即可得到答案.

(1)列聯(lián)表如下:

看電視

運(yùn)動(dòng)

合計(jì)

女性

43

27

70

男性

21

33

54

合計(jì)

64

60

124

(2)假設(shè)休閑方式與性別無關(guān),由公式算得k≈6.201,比較P(K2≥5.024)0.025,所以有理由認(rèn)為假設(shè)休閑方式與性別無關(guān)是不合理的,即在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為休閑方式與性別有關(guān)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在區(qū)間上的最大值;

2)若過點(diǎn)存在3條直線與曲線相切,求t的取值范圍;

3)問過點(diǎn)分別存在幾條直線與曲線相切?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(x2﹣2x﹣3)的單調(diào)減區(qū)間是( 。
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何中,與三角形的三條邊所在直線的距離相等的點(diǎn)有且只有四個(gè).類似的:在立體幾何中,與正四面體的六條棱所在直線的距離相等的點(diǎn) ( )

A. 有且只有一個(gè) B. 有且只有三個(gè) C. 有且只有四個(gè) D. 有且只有五個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 分別是棱的中點(diǎn),點(diǎn)在線段上(包括兩個(gè)端點(diǎn))運(yùn)動(dòng)

(1)當(dāng)為線段的中點(diǎn)時(shí),

求證:;②求平面與平面所成銳二面角的余弦值;

(2)求直線與平面所成的角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。

A.0,0
B.1,1
C.0,1
D.1,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點(diǎn)為F的拋物線x2=2py(p>0)交于A,B兩點(diǎn),若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在x=-1與x=2處都取得極值.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)若對(duì),不等式恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在常數(shù),使得數(shù)列滿足對(duì)一切恒成立,則稱為“可控?cái)?shù)列”.

(1) 若數(shù)列的通項(xiàng)公式為,試判斷數(shù)列是否為“可控?cái)?shù)列”?并說明理由;

(2) 是首項(xiàng)為5的“可控?cái)?shù)列”,且單調(diào)遞減,問是否存在常數(shù),使?若存在,求出的值;若不存在,請(qǐng)說明理由;

(3) 若“可控?cái)?shù)列”的首項(xiàng)為2,,求不同取值的個(gè)數(shù)及最大值.(直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案