如圖,在Rt△ABC中,∠B=90°,AB=1,BC=,點(diǎn)M、N分別在邊AB和AC上(點(diǎn)M和點(diǎn)B不重合),將△AMN沿MN翻折到△A′MN,頂點(diǎn)A′恰好落在邊BC上(點(diǎn)A′和點(diǎn)B不重合)。
(1)設(shè)∠AMN=θ,x表示線段AM的長度,把x表示為θ的函數(shù),并寫出θ的取值范圍;
(2)求線段A′N長度的最小值.
解:(1)MA′=MA=x,則MB=1-x,
在Rt△MBA′中,
,
∵點(diǎn)M在線段AB上,點(diǎn)M和點(diǎn)B不重合,點(diǎn)A′和點(diǎn)B不重合,
∴45°<θ<90°.
(2)在△AMN中,∠ANM=120°-θ,,
,


,
∵45°<θ<90°,
∴60°<2θ-30°<150°,
當(dāng)且僅當(dāng)2θ-30°=90°,θ=60°時(shí),t有最大值,
∴θ=60°時(shí),A′N有最小值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
3
,則AC的長為( 。
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
(1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊答案