【題目】某地區(qū)發(fā)生里氏8.0級特大地震.地震專家對發(fā)生的余震進(jìn)行了監(jiān)測,記錄的部分?jǐn)?shù)據(jù)如下表:

強(qiáng)度(J)

1.6×1019

3.2×1019

4.5×1019

6.4×1019

震級(里氏)

5.0

5.2

5.3

5.4

注:地震強(qiáng)度是指地震時釋放的能量.

地震強(qiáng)度(x)和震級(y)的模擬函數(shù)關(guān)系可以選用y=alg x+b(其中a,b為常數(shù)).利用散點圖(如圖)可知a的值等于________.(取lg 2=0.3進(jìn)行計算)

【答案】

【解析】由記錄的部分?jǐn)?shù)據(jù)可知

x=1.6×1019時,y=5.0,

x=3.2×1019時,y=5.2.

所以5.0=alg (1.6×1019)+b,

5.2=alg (3.2×1019)+b,

②-①得0.2=alg ,0.2=alg 2.

所以a=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中點,N是BC的中點,點P在線段A1B1上運動.

(Ⅰ)求證:PN⊥AM;

(Ⅱ)試確定點P的位置,使直線PN和平面ABC所成的角

最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子元件廠對一批新產(chǎn)品的使用壽命進(jìn)行檢驗,并且廠家規(guī)定使用壽命在為合格品,使用壽命超過500小時為優(yōu)質(zhì)品,質(zhì)檢科抽取了一部分產(chǎn)品做樣本,經(jīng)檢測統(tǒng)計后,繪制出了該產(chǎn)品使用壽命的頻率分布直方圖(如圖):

(1)根據(jù)頻率分布直方圖估計該廠產(chǎn)品為合格品或優(yōu)質(zhì)品的概率,并估計該批產(chǎn)品的平均使用壽命;

(2)從這批產(chǎn)品中,采取隨機(jī)抽樣的方法每次抽取一件產(chǎn)品,抽取4次,若以上述頻率作為概率,記隨機(jī)變量為抽出的優(yōu)質(zhì)品的個數(shù),列出的分布列,并求出其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),().

(1)若函數(shù)的圖象在上有兩個不同的交點,求實數(shù)的取值范圍;

(2)若在上不等式恒成立,求實數(shù)的取值范圍;

(3)證明:對于時,任意,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分,第(1)問 4 分,第(2)問 8 分)

某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此實驗重復(fù)輪,第輪的點數(shù)分別記為,如果點數(shù)滿足,則認(rèn)為第輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束。

求第一輪闖關(guān)成功的概率;

如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆云南曲靖一中高三文上學(xué)期月考四】已知函數(shù)

(1)若的極值點的極大值;

(2)求的范圍,使得恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

同步練習(xí)冊答案