(本小題滿分12分)過點M(1,1)作直線與拋物線
交于A、B兩點,該拋物線在A、B兩點處的兩條切線交于點P。 (I)求點P的軌跡方程; (II)求△ABP的面積的最小值。
(Ⅰ)
(Ⅱ)
時,S有最小值1
(I)設(shè)直線AB方程為由
,代入
得
2分
則切線PA的方程為
①
同理,切線PB的方程為
② …………5分
由①、②兩式得點P的坐標(biāo)為
,于是
,即點P軌跡的參數(shù)方程為
消去參數(shù)
k,得點P的軌跡方程為
……7分
(II)由(I)知
點P到直線AB的距離
…………10分
△ABC的面積
當(dāng)
時,S有最小值1。 …12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知動圓
過定點
,且和定直線
相切.(Ⅰ)求動圓圓心
的軌跡
的方程;(Ⅱ)已知點
,過點
作直線與曲線
交于
兩點,若
(
為實數(shù)),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
中心在原點,對稱軸為坐標(biāo)軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
,通徑長為1,且焦點與短軸兩端點構(gòu)成等邊三角形,(1)求橢圓的方程;(2)過點Q(-1,0)的直線
l交橢圓于A,B兩點,交直線
x=-4于點E,點Q分
所成比為λ,點E分
所成比為μ,求證λ+μ為定值,并計算出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
的一組斜率為2的平行弦中點的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知曲線
的方程為:
(1)若曲線
是橢圓,求
的取值范圍;
(2)若曲線
是雙曲線,且有一條漸近線的傾斜角為
,求此雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓的中心在原點,其左焦點
與拋物線
的焦點重合,過
的直線
與橢圓交于
A、
B兩點,與拋物線交于
C、
D兩點.當(dāng)直線
與
x軸垂直時,
.
(Ⅰ)求橢圓的方程;
(II)求過點O、
,并且與橢圓的左準(zhǔn)線相切的圓的方程;
(Ⅲ)求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)一束光線從點
出發(fā),經(jīng)直線
l:
上一點
反射后,恰好穿過點
.(1)求
點的坐標(biāo);(2)求以
、
為焦點且過點
的橢圓
的方程; (3)設(shè)點
是橢圓
上除長軸兩端點外的任意一點,試問在
軸上是否存在兩定點
、
,使得直線
、
的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點
、
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
雙曲線M的中心在原點,并以橢圓
的焦點為焦點,以拋物線
的準(zhǔn)線為右準(zhǔn)線.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)設(shè)直線
:
與雙曲線M相交于A、B兩點,O是原點.
① 當(dāng)
為何值時,使得
?
② 是否存在這樣的實數(shù)
,使A、B兩點關(guān)于直線
對稱?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>