【題目】近年來電子商務(wù)蓬勃發(fā)展,同時也極大地促進了快遞行業(yè)的發(fā)展,為了更好地服務(wù)客戶,某快遞公司使用客戶評價系統(tǒng)對快遞服務(wù)人員的服務(wù)進行評價,每月根據(jù)客戶評價評選出快遞之星.已知快遞小哥小張在每個月被評選為快遞之星的概率都是,則小張在第一季度的3個月中有2個月都被評為快遞之星的概率為_______;設(shè)小張在上半年的6個月中被評為快遞之星的次數(shù)為隨機變量X,則隨機變量X的方差______

【答案】

【解析】

由獨立重復(fù)試驗的概率公式即可得小張在第一季度的3個月中有2個月都被評選為快遞之星的概率;隨機變量服從二項分布,由方差公式可得結(jié)果.

由題意可知,小張在第一季度的3個月中有2個月都被評選為快遞之星的概率為;由題意易知,隨機變量服從二項分布,所以

故答案為:(1). (2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角梯形中,,、分別是、上的點,,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:

平面;

②四點、、可能共面;

③若,則平面平面

④平面與平面可能垂直.其中正確的是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )

A.1B.1C..D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實常數(shù)且).

Ⅰ)當時;

設(shè),判斷函數(shù)的奇偶性,并說明理由;

求證:函數(shù)上是增函數(shù);

Ⅱ)設(shè)集合,若,求的取值范圍(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征和嚴重急性呼吸綜合征等較嚴重疾。衲瓿醭霈F(xiàn)并在全球蔓延的新型冠狀病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中感染可導(dǎo)致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.

某藥物研究所為篩查該種病毒,需要檢驗血液是否為陽性,現(xiàn)有,且)份血液樣本,每個樣本取到的可能性相等,有以下兩種檢驗方式:

方式一:逐份檢驗則需要檢驗次;

方式二:混合檢驗,將份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,則這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為

1)假設(shè)有6份血液樣本,其中只有2份樣本為陽性,從中任取3份樣本進行醫(yī)學(xué)研究,求至少有1份為陽性樣本的概率;

2)假設(shè)將)份血液樣本進行檢驗,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為;

①運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式

②若與干擾素計量相關(guān),其中數(shù)列滿足,當時,試討論采用何種檢驗方式更好?

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形ABCD是矩形,平面平面ABCD,ESB的中點,MCD上任意一點.

1)求證:;

2)若,平面SAD,求直線BM與平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、中,,,且,,設(shè)數(shù)列、的前項和分別為.

1)若數(shù)列是等差數(shù)列,求;

2)若數(shù)列是公比為2的等比數(shù)列.

①求

②是否存在實數(shù),使對任意自然數(shù)都成立?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別是,點是橢圓上除長軸端點外的任一點,連接,,設(shè)的內(nèi)角平分線的長軸于點

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱錐SABC中,△ABC與△SBC都是邊長為1的正三角形,二面角ABCS的大小為,若S,A,B,C四點都在球O的表面上,則球O的表面積為(

A.πB.πC.πD.

查看答案和解析>>

同步練習(xí)冊答案