已知函數(shù) 
(1)當(dāng)在點處的切線方程是y=x+ln2時,求a的值.
(2)當(dāng)的單調(diào)遞增區(qū)間是(1,5)時,求a的取值集合.
(1);(2)

試題分析:(1)利用導(dǎo)數(shù)的幾何意義,先求,利用,解出;
(2)函數(shù)的單調(diào)遞增區(qū)間是,所以導(dǎo)函數(shù)的解集為,所以先求函數(shù)的導(dǎo)數(shù),的解集為的兩個實根為,根據(jù)根與系數(shù)的關(guān)系得到.
(1),,代入                 5分
(2),的解集為的兩個實根為,根據(jù)根與系數(shù)的關(guān)系得到,a的取值集合為     10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中.
(1)求證:函數(shù)在點處的切線與總有兩個不同的公共點;
(2)若函數(shù)在區(qū)間上有且僅有一個極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若處的切線與直線垂直,求的值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時,求的最小值;
(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在點(1,1)處的切線方程               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•重慶)已知,則a=( 。
A.1B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點處的切線斜率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx.
(1)若函數(shù)y=f(x)在x=2處有極值-6,求y=f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x)的導(dǎo)數(shù)f′(x)對x∈[-1,1]都有f′(x)≤2,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(污染源)的污染強度分別為,它們連線上任意一點C處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設(shè)).
(1)試將表示為的函數(shù); (2)若,且時,取得最小值,試求的值.

查看答案和解析>>

同步練習(xí)冊答案