5.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與拋物線C2:y2=2px(p>0)的準(zhǔn)線圍成一個(gè)等邊三角形,則雙曲線C1的離心率是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.2

分析 由題意,漸近線的斜率為$±\frac{\sqrt{3}}{3}$,由a,b,c的關(guān)系和離心率公式,計(jì)算即可得到所求值.

解答 解:由題意,漸近線的斜率為$±\frac{\sqrt{3}}{3}$.
∴$\frac{a}$=$\frac{\sqrt{3}}{3}$,
∴e=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\frac{2\sqrt{3}}{3}$,
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的漸近線方程,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面積;
(Ⅱ)若D,E在線段BC上,且BD=DE=EC,$AE=2\sqrt{3}BD$,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2sinx-1,sin(2x+$\frac{π}{3}$)),$\overrightarrow$=(1,cos(2x+$\frac{π}{6}$)),$\overrightarrow{c}$=(cosx,1),f(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$
(1)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)△ABC的角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,且a2,b2,c2成等差數(shù)列,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知曲線C的極坐標(biāo)方程為ρ=2,在以極點(diǎn)為直角坐標(biāo)原點(diǎn)O,極軸為x軸的正半軸建立的平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=3\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線C經(jīng)過(guò)伸縮變換φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=y}\end{array}\right.$得到曲線C′,若M(x,y)為曲線C′上任意一點(diǎn),求點(diǎn)M到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在我國(guó)古代著名的數(shù)學(xué)專著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,齊去長(zhǎng)安一千一百二十五里,良馬初日行一百零三里,日增一十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問(wèn):幾日相逢?( 。
A.8日B.9日C.12日D.16日

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)復(fù)數(shù)z=a+bi(a,b∈R,i為虛數(shù)單位),若z=(4+3i)i,則ab的值是-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù)),其中0≤α<π.在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1:ρ=4cosθ.直線l與曲線C1相切.
(1)將曲線C1的極坐標(biāo)方程化為直角坐標(biāo)方程,并求α的值.
(2)已知點(diǎn)Q(2,0),直線l與曲線C2:x2+$\frac{{y}^{2}}{3}$=1交于A,B兩點(diǎn),求△ABQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.(x2-x-2)3展開式中x項(xiàng)的系數(shù)為( 。
A.-12B.12C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x2-x,g(x)=ex-ax-1(e為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)g(x)的單調(diào)性;
(2)當(dāng)x>0時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案