已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形面積為
3

(1)求橢圓的方程;
(2)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PB交橢圓C于另一點E,證明直線AE與x軸相交于點Q(1,0).
考點:直線與圓錐曲線的綜合問題
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由離心率公式和三角形的面積公式及a,b,c的關(guān)系式,即可得到方程,解出即可得到橢圓方程;
(2)由題意知直線PB的斜率存在,設(shè)方程為y=k(x-4)代入橢圓方程,利用韋達定理,表示出直線AE的方程,令y=0,化簡即可得到結(jié)論
解答: (1)解:由題意得:
c
a
=
1
2
bc=
3
a2=b2+c2
,解之得:
a=2
b=
3
c=1
,
則橢圓的方程為:
x2
4
+
y2
3
=1;
(2)由題意知直線PB的斜率存在,
設(shè)方程為y=k(x-4)代入橢圓方程可得,
(4k2+3)x2-32k2x+64k2-12=0,
設(shè)B(x1,y1),E(x2,y2),則A(x1,-y1),
∴x1+x2=
32k2
4k2+3
,x1x2=
64k2-12
4k2+3
,
又直線AE的方程為y-y2=
y2+y1
x2-x1
(x-x2),
令y=0,則x=x2-
y2(x2-x1)
y2+y1
=
2x1x2-8(x1+x2)
x1+x2-8
=1,
故直線AE過x軸上一定點Q(1,0).
點評:本題考查橢圓的幾何性質(zhì),考查橢圓的標準方程,解題的關(guān)鍵是確定幾何量之間的關(guān)系,利用直線與橢圓聯(lián)立,結(jié)合韋達定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+(p+2)x+4=0},且A∩R≠∅,求P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)一種產(chǎn)品,每年需投入預(yù)定成本60萬元,此外每生產(chǎn)1萬件產(chǎn)品需要增加投資35萬元,經(jīng)預(yù)測知,市場對這種產(chǎn)品的需求量為5萬件,且當(dāng)售出的這種產(chǎn)品的數(shù)量為t(單位:萬件)時,銷售所得的收入約為500t-50t2(萬元).
(1)若該公司這種產(chǎn)品的年產(chǎn)量為x(單位:萬件,x>0),試把該公司生產(chǎn)銷售這種產(chǎn)品所得的年利潤表示為當(dāng)年產(chǎn)量x的函數(shù).
(2)當(dāng)該公司的年產(chǎn)量為多大時,當(dāng)年所得的利潤最大?并求出當(dāng)年所得利潤最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體A1B1C1D1-ABCD中,E,F(xiàn)分別為A1D與D1C的中點.
(Ⅰ)證明:EF∥平面ABCD;
(Ⅱ)證明:DD1⊥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
的離心率e=
2
3
,A、B是橢圓上關(guān)于x、y軸均不對稱的兩點,線段AB的垂直平分線與x軸交于點P(1,0).
(1)設(shè)AB的中點為C(x0,y0),求x0的值;
(2)若F是橢圓的右焦點,且AF+BF=3,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方形ABCD-A′B′C′D′中,棱長為1,求證:平面AB′C⊥平面BB′D′D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(-2,-3)和以Q為圓心的圓(x-4)2+(y-2)2=9.
(1)求以PQ為直徑,Q′為圓心的圓的方程;
(2)以Q為圓心的圓和以Q′為圓心的圓的兩個交點A,B,直線PA,PB是以Q為圓心的圓的切線嗎?為什么?
(3)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5),則f′(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在[a,b]上的函數(shù)f(x)=x3-3x2+1的值域為[-3,1],則b-a的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案