12.已知A、B兩地的距離是120km,按交通法規(guī)規(guī)定,A、B兩地之間的公路車速應(yīng)限制在50~100km/h.假設(shè)汽油的價(jià)格是6元/升,汽車的油耗率為$(3+\frac{x^2}{360})L/h$,司機(jī)每小時(shí)的工資是42元,設(shè)車速x(單位:km/h),如果不考慮其他費(fèi)用,行車的總費(fèi)用為y(單位:元).
(1)將y表示為x的函數(shù);
(2)最經(jīng)濟(jì)的車速是多少?并求出這次行車的最小費(fèi)用?

分析 (1)利用已知條件設(shè)汽車以xkm/h行駛時(shí),行車的總費(fèi)用為y元,列出函數(shù)關(guān)系;
(2)利用基本不等式,求出函數(shù)的最值即可.

解答 解:(1)設(shè)汽車以xkm/h行駛時(shí),行車的總費(fèi)用為y元,則
y=$\frac{120}{x}$×(3+$\frac{{x}^{2}}{360}$)×6+$\frac{120}{x}$×42=2x+$\frac{7200}{x}$,50≤x≤100.       …(4分)
(2)y=2x+$\frac{7200}{x}$≥2$\sqrt{2x•\frac{7200}{x}}$=240    …(9分)
當(dāng)且僅當(dāng)2x=$\frac{7200}{x}$,即x=60時(shí),這次行車的費(fèi)用最小,
∴最經(jīng)濟(jì)的車速為60km/h,此時(shí)行車的總費(fèi)用為240元.   …(10分)

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查函數(shù)的最值的求法,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列a3=$\frac{5}{2}$,且a2a4=6.
(1)求{an}的首項(xiàng)a1和公差d;
(2)求{an}的通項(xiàng)和前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若實(shí)數(shù)x,y滿足方程x2+y2-4x+1=0,則x2+y2的最大值是7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,Sn=2n-an(n∈N*).
(1)計(jì)算a2,a3,a4,并由此猜想通項(xiàng)公式an;
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.命題p:不等式x2-(a+1)x+1>0的解集是R.命題q:函數(shù)f(x)=(a+1)x在定義域內(nèi)是增函數(shù).若p∧q為假命題,p∨q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.A={(x,y)|y=2x+5},B={(x,y)|y=1-2x},則A∩B={(-1,3)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在等差數(shù)列{an}中,a14+a15+a16=-54,a9=-36,Sn為其前n項(xiàng)和.
(1)求Sn的最小值,并求出相應(yīng)的n值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某種產(chǎn)品的廣告費(fèi)用支出x(千元)與銷售額y(10萬(wàn)元)之間有如下的對(duì)應(yīng)數(shù)據(jù):
x24568
y34657
(Ⅰ)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出銷售額y關(guān)于費(fèi)用支出x的線性回歸方程$\stackrel{∧}{y}$=bx+a
不得禽流感得禽流感總計(jì)
服藥
不服藥
總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在一段時(shí)間內(nèi),某種商品的價(jià)格x(元)和某大型公司的需求量y(千件)之間的一組數(shù)據(jù)如表:
價(jià)格x8.28.610.011.311.9
需求量y6.27.58.08.59.8
根據(jù)上表可得回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$.據(jù)此估計(jì),某種商品的價(jià)格為15元時(shí),求其需求量約為多少千件?

查看答案和解析>>

同步練習(xí)冊(cè)答案