1.若正實(shí)數(shù)x,y滿足x+2y+2xy-8=0,則x+2y的最小值(  )
A.3B.4C.$\frac{9}{2}$D.$\frac{11}{2}$

分析 正實(shí)數(shù)x,y滿足x+2y+2xy-8=0,利用基本不等式的性質(zhì)可得x+2y+($\frac{x+2y}{2}$)2-8≥0,設(shè)x+2y=t>0,即可求出x+2y的最小值.

解答 解:∵正實(shí)數(shù)x,y滿足x+2y+2xy-8=0,
∴x+2y+($\frac{x+2y}{2}$)2-8≥0,
設(shè)x+2y=t>0,
∴t+$\frac{1}{4}$t2-8≥0,
∴t2+4t-32≥0,
即(t+8)(t-4)≥0,
∴t≥4,
故x+2y的最小值為4,
故選:B.

點(diǎn)評(píng) 本題考查了不等式的解法、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.近日,某公司對(duì)其生產(chǎn)的一款產(chǎn)品進(jìn)行促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷售量P(單位:萬件)與促銷費(fèi)用x(單位:萬元)滿足函數(shù)關(guān)系:p=3-$\frac{2}{x+1}$(其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品件數(shù)為P(單位:萬件)時(shí),還需投入成本10+2P(單位:萬元)(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為(4+$\frac{30}{p}$)元/件,假定生產(chǎn)量與銷售量相等.
(Ⅰ)將該產(chǎn)品的利潤(rùn)y(單位:萬元)表示為促銷費(fèi)用x(單位:萬元)的函數(shù);
(Ⅱ)促銷費(fèi)用x(單位:萬元)是多少時(shí),該產(chǎn)品的利潤(rùn)y(單位:萬元)取最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算27${\;}^{-\frac{1}{3}}}$的結(jié)果是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=4x2-mx+5,在[-2,+∞)上遞增,在(-∞,-2]上遞減,則f(1)=( 。
A.-7B.1C.17D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sin3x+cos2x-cos2x-sinx的最大值等于( 。
A.$\frac{4}{27}$B.$\frac{5}{27}$C.$\frac{1}{3}$D.$\frac{16}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b是正數(shù),且a≠b,比較a3+b3與a2b+ab2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若增函數(shù)f(x)=ax+b與x軸交點(diǎn)是(2,0),則不等式bx2-ax>0的解集是( 。
A.$(-∞,-\frac{1}{2})∪(0,+∞)$B.$(0,\frac{1}{2})$C.$(-\frac{1}{2},0)$D.$(-∞,0)∪(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí)f(x)=log2x,則f(-4)+f(0)=-2; 若f(a)>f(-a),則實(shí)數(shù)a的取值范圍是a>1或-1<a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}中,a1=-3,11a5=5a8,前n項(xiàng)和為Sn
(1)求an;
(2)當(dāng)n為何值時(shí),Sn最。坎⑶骃n的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案