8.命題p:?x∈N,x3<x2;命題q:?a∈(0,1)∪(1,+∞),函數(shù)f(x)=loga(x-1)的圖象過點(2,0),則下列命題是真命題的是( 。
A.p∧qB.p∨¬qC.¬p∧qD.¬p∧?q

分析 根據(jù)函數(shù)的性質(zhì)分別判斷命題p,q的真假,結(jié)合復(fù)合命題真假關(guān)系進(jìn)行判斷即可.

解答 解:設(shè)f(x)=x3-x2,則f′(x)=3x2-2x=x(3x-2),
當(dāng)x≥1時,f′(x)>0,即當(dāng)x≥1時,f(x)為增函數(shù),則f(x)≥f(1)=0,此時x3>x2,
當(dāng)x=0時,x3=x2=0,故?x∈N,x3≥x2;即命題p:?x∈N,x3<x2;為假命題.
∵f(2)=loga(2-1)=loga1=0,∴函數(shù)f(x)=loga(x-1)的圖象過點(2,0),故命題q是真命題,
則¬p∧q為真命題.,其余為假命題.
故選:C

點評 本題主要考查復(fù)合命題真假關(guān)系的判斷,根據(jù)條件判斷命題p,q的真假是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若某幾何體的三視圖(單位:cm)如圖所示,且俯視圖為正三角形,則該幾何體的體積等于(  )
A.3$\sqrt{3}$cm3B.6$\sqrt{3}$cm3C.$\frac{15}{2}\sqrt{3}$cm3D.9$\sqrt{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AB⊥平面BCP,CD∥AB,AB=BC=CP=BP=2,CD=1.
(1)求點B到平面DCP的距離;
(2)點M為線段AB上一點(含端點),設(shè)直線MP與平面DCP所成角為α,求sinα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求函數(shù)y=$\left\{\begin{array}{l}{-x+4,x≥2}\\{x+3,0<x≤1}\\{2x+3,-1≤x≤0}\end{array}\right.$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ai∈{0,1,2}(i=0,1,2,3),且a0≠0,則A中所有元素之和等于837.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(lg2)2+lg2•lg50+lg25-(${\frac{1}{2}}$)-1+8${\;}^{\frac{2}{3}}}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.半徑為10cm,面積為100cm2的扇形中,弧所對的圓心角為( 。
A.10B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若2$\sqrt{2}$是b-1,b+1的等比中項,則b=±3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,SA=AB=BC=2,AD=1,M,N分別是SB,SC的中點.
(Ⅰ)求證:AM∥平面SCD;
(Ⅱ)設(shè)平面SCD與平面SAB所成二面角為θ,求cosθ的值.

查看答案和解析>>

同步練習(xí)冊答案