【題目】校高一1班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如下圖

1求分?jǐn)?shù)在的頻率及全班人數(shù);

2求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

3若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率

【答案】1分?jǐn)?shù)在之間的頻數(shù)為2,全班人數(shù)為.(2分?jǐn)?shù)在之間的頻數(shù)為;頻率分布直方圖中間的矩形的高為;3

【解析】

試題分析:1根據(jù)分?jǐn)?shù)在的頻率為,和由莖葉圖知分?jǐn)?shù)在之間的頻數(shù)為2,得到全班人數(shù)

2分?jǐn)?shù)在之間的頻數(shù)為,求出頻率,根據(jù)小長(zhǎng)方形的高是頻率比組距,得到結(jié)果

3本題是一個(gè)等可能事件的概率,將分?jǐn)?shù)編號(hào)列舉出在之間的試卷中任取兩份的基本事件,至少有一份在之間的基本的事件有7個(gè),得到概率至少有一份分?jǐn)?shù)在之間的概率是

試題解析:1分?jǐn)?shù)在的頻率為,

由莖葉圖知:分?jǐn)?shù)在之間的頻數(shù)為2,所以全班人數(shù)為

2分?jǐn)?shù)在之間的頻數(shù)為

頻率分布直方圖中間的矩形的高為

3之間的3個(gè)分?jǐn)?shù)編號(hào)為,之間的2個(gè)分?jǐn)?shù)編號(hào)為,

之間的試卷中任取兩份的基本事件為:

,,,,,10個(gè),

其中,至少有一個(gè)在之間的基本事件有7個(gè),

故至少有一份分?jǐn)?shù)在之間的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,

(1)在上確定一點(diǎn),使得平面,并求的值;

(2)在(1)條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=lg(ax2+2x+1)

(1)若函數(shù)f (x)的定義域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍;

(2)若函數(shù)f (x)的值域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,,為等邊三角形,,,的中點(diǎn).

(1)求;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,過(guò)橢圓右頂點(diǎn)和上頂點(diǎn)的直線(xiàn)與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點(diǎn),過(guò)點(diǎn)分別作直線(xiàn)交橢圓兩點(diǎn),設(shè)這兩條直線(xiàn)的斜率分別為,且,證明:直線(xiàn)過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為3的正方形,平面,且

1試在線(xiàn)段上確定一點(diǎn)的位置,使得平面;

2求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高2010級(jí)數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種?

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1的單調(diào)區(qū)間;

2為整數(shù), 且當(dāng)時(shí),, 的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);

(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間矩形的高;

(Ⅲ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在[90,100)之間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案