已知橢圓C:+=1(a>b>0)的離心率e=,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)過原點(diǎn)且斜率為的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;
(3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N 的圓G相切,切點(diǎn)為T.證明:線段OT的長為定值,并求出該定值.
(1)+y2=1 ;(2) ∠EF2F是銳角;(3)線段OT的長度為定值2.
解析試題分析:(1)因為橢圓C的離心率e=,故設(shè)a=2m,c=m,則b=m,直線A2B2方程為 bx ay ab=0,所以=,解得m=1,故橢圓方程為+y2=1; (2)聯(lián)立橢圓和直線方程解出交點(diǎn)坐標(biāo)E(,),F(xiàn)( , ) ,根據(jù)向量數(shù)量積為正可判斷∠EF2F是銳角;(3)由(1)可知A1(0,1)A2(0,1),設(shè)P(x0,y0), 直線PA1:y 1=x,令y=0,得xN= ,直線PA2:y+1=x,令y=0,得xM=,接下來有兩種方法,解法一,設(shè)圓G的圓心為( ( ),h),利用圓的方程和勾股定理求解;解法二,OM·ON=|( )·|=,利用切割線定理得求解.
試題解析:(1)因為橢圓C的離心率e=,
故設(shè)a=2m,c=m,則b=m.
直線A2B2方程為 bx ay ab=0,
即mx 2my 2m2=0.
所以=,解得m=1.
所以 a=2,b=1,橢圓方程為+y2=1. 5分
由得E(,),F(xiàn)( , ). .7分
又F2(,0),所以=( ,),=( , ),
所以·=( )×( )+×()=>0.
所以∠EF2F是銳角. 10分
(3)由(1)可知A1(0,1) A2(0, 1),設(shè)P(x0,y0),
直線PA1:y 1=x,令y=0,得xN= ;
直線PA2:y+1=x,令y=0,得xM=; 12分
解法一:設(shè)圓G的圓心為( ( ),h),
則r2=[ ( ) ]2+h2= (+)2+h2.
OG2= (
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)是單位圓上一點(diǎn),一個動點(diǎn)從點(diǎn)出發(fā),沿圓周按逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.秒時,動點(diǎn)到達(dá)點(diǎn),秒時動點(diǎn)到達(dá)點(diǎn).設(shè),其縱坐標(biāo)滿足.
(1)求點(diǎn)的坐標(biāo),并求;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量函數(shù)的第個零點(diǎn)記作(從小到大依次計數(shù)),所有組成數(shù)列.
(1)求函數(shù)的值域;
(2)若,求數(shù)列的前100項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,其中向量,,.在中,角A、B、C的對邊分別為,,.
(1)如果三邊,,依次成等比數(shù)列,試求角的取值范圍及此時函數(shù)的值域;
(2) 在中,若, ,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是一個平面內(nèi)的三個向量,其中=(1,2)
(1)若||=,∥,求及·.
(2)若||=,且+2與3-垂直,求與的夾角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com