六名學(xué)生需依次進行身體體能和外語兩個項目的訓(xùn)練及考核。每個項目只有一次補考機會,補考不合格者不能進入下一個項目的訓(xùn)練(即淘汰),若每個學(xué)生身體體能考核合格的概率是,外語考核合格的概率是,假設(shè)每一次考試是否合格互不影響。
①求某個學(xué)生不被淘汰的概率。
②求6名學(xué)生至多有兩名被淘汰的概率
③假設(shè)某學(xué)生不放棄每一次考核的機會,用表示其參加補考的次數(shù),求隨機變量的分布列和數(shù)學(xué)期望。
1)正面:  ①兩個項目都不補考能通過概率:
②兩個項目中有一個項目要補考才能通過的概率:
③兩個項目都要補考才能通過的概率:

反面(間接法)被淘汰的概率:

2)
3)



0
1
2
P



 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

今天你低碳了嗎?近來,國內(nèi)網(wǎng)站流行一種名為“碳排放計算器”的軟件,人們可以由此計算出自己每天的碳排放量。例如:家居用電的碳排放量(千克) = 耗電度數(shù)0.785,汽車的碳排放量(千克)=油耗公升數(shù)0.785等。懷化某中學(xué)高一一同學(xué)利用寒假在兩個小區(qū)逐戶進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查。若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”。這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例P數(shù)據(jù)如右:

(I)如果甲、乙來自A小區(qū),丙、丁來自B小區(qū),求這4人中恰有2人是低碳族的概率;
(II)A小區(qū)經(jīng)過大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后隨機地從A小區(qū)中任選25人,記表示25個人中低碳族人數(shù),求E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了拓展網(wǎng)絡(luò)市場,騰訊公司為用戶推出了多款應(yīng)用,如“農(nóng)場”、“音樂”、“讀書”等.某校研究性學(xué)習(xí)小組準(zhǔn)備舉行一次“使用情況”調(diào)查,從高二年級的一、二、三、四班中抽取10名學(xué)生代表參加,抽取不同班級的學(xué)生人數(shù)如下表所示:
班級
一班
二班
三班
四班
人數(shù)
2人
3人
4人
1人
(I)從這10名學(xué)生中隨機選出2名,求這2人來自相同班級的概率;
(Ⅱ) 假設(shè)在某時段,三名學(xué)生代表甲、乙、丙準(zhǔn)備分別從農(nóng)場、音樂、讀書中任意選擇一項,他們選擇農(nóng)場的概率都為;選擇音樂的概率都為;選擇讀書的概率都為;他們的選擇相互獨立.設(shè)在該時段這三名學(xué)生中選擇讀書的總?cè)藬?shù)為隨機變量,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
有甲、乙兩種相互獨立的預(yù)防措施可以降低某地區(qū)某災(zāi)情的發(fā)生.單獨采用甲、乙預(yù)防措施后,災(zāi)情發(fā)生的概率分別為0.08和0.10,且各需要費用60萬元和50萬元.在不采取任何預(yù)防措施的情況下發(fā)生災(zāi)情的概率為0.3.如果災(zāi)情發(fā)生,將會造成800萬元的損失.(設(shè)總費用=采取預(yù)防措施的費用+可能發(fā)生災(zāi)情損失費用)
(I)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨采用,他們各自總費用是多少?
(II)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨采用、聯(lián)合采用或不采用,請確定預(yù)防方案使總費用最少的那個方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

隨機變量服從正態(tài)分布"(0,1),若  P(<1) ="0.8413" 則P(-1<<0)=_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機變量ξ的分布列為
ξ
1
2
3
4
5
P
0.1
0.2
0.4
0.2
0.1
η=2ξ-3,則η的期望為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機變量的分布列如下表所示,的期望,則的值等于       ;

0
1
2
3
P
0.1


0.2
    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機變量的分布如圖所示則數(shù)學(xué)期望         

0
1
2
3





 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

國家公務(wù)員考試,某單位已錄用公務(wù)員5人,擬安排到A、B、C三個科室工作,但甲必須安排在A科室,其余4人可以隨機安排。
(1)求每個科室安排至少1人至多2人的概率; 
(2)設(shè)安排在A科室的人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案