12.若角960°的終邊上有一點(diǎn)(-4,a),則a的值是-4$\sqrt{3}$.

分析 根據(jù)終邊相同的角的概念,利用三角函數(shù)的值,即可求出a的值.

解答 解:∵960°=5×180°+60°,
∴角960°的終邊在第三象限內(nèi),
且tan960°=tan60°=$\sqrt{3}$=$\frac{a}{-4}$,
∴a=-4$\sqrt{3}$.
故答案為:-4$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了終邊相同角的概念與應(yīng)用問題,也考查了特殊角的三角函數(shù)值的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+1)+m+1,則f(-15)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足a3=7,且a5+a7=26,
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{{a_n}^2-4}}$,求數(shù)列bn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若2sin77°-sin17°=λsin73°,則λ=(  )
A.$\sqrt{3}$B.1C.-$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)A、B是非空集合,定義A⊙B={x|x∈A,且x∉B},已知A={x|x2-x-2≤0},B={x|y=$\frac{1}{\sqrt{1-x}}$},則A⊙B=( 。
A.B.[-1,2]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知P(x,y)是圓x2+(y-3)2=a2(a>0)上的動(dòng)點(diǎn),定點(diǎn)A(2,0),B(-2,0),△PAB的面積最大值為8,則a的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x∈R|-1<x<1},B={x∈R|0≤x≤3},則A∪B=( 。
A.{x|0≤x<1}B.{x|1<x≤3}C.{x|-1<x≤3}D.{x|x<-1,或x≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知
曲線C1:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=3,曲線C2:$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t+1}\end{array}\right.$,(t為參數(shù)).
(I)寫出C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)設(shè)C1和C2的交點(diǎn)為P,求點(diǎn)P在直角坐標(biāo)系中的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如表統(tǒng)計(jì)資料:
x23456
y2.23.85.56.57.0
若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,試求:
(Ⅰ)請(qǐng)畫出表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$y=\widehatbx+\widehata$;
(Ⅲ)計(jì)算出第2年和第6年的殘差.(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

同步練習(xí)冊(cè)答案