【題目】已知是兩條不同的直線, 是兩個不同的平面,則下列命題正確的是 ( )
A. 若,則 B. 若,則
C. 若,則 D. 若,則
【答案】D
【解析】分析:平行一個平面的兩條直線有三種位置關(guān)系:相交、異面、平行,排除A;兩面垂
直,平行其中一個平面的直線與該平面有三種位置關(guān)系:平行、相交、在面內(nèi),故
排除B;平行與一條直線的兩個平面有兩種位置關(guān)系:平行、相交,故排除C;由
直線與平面垂直和平面與平面垂直的判定可知選項D正確。
詳解:對于選項A,若,則兩直線可能平行、相交、異面,故A錯;
對于選項B,若,則直線與平面可能平行、線在面內(nèi)、相交,故
B錯;
對于選項C,若,則兩平面可能平行、相交,故C錯;
對于選項D,若,由平面與平面垂直的判定定理可知D正確。
故選D。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若|f(x)|≥ax,則a的取值范圍是( )
A.(﹣∞,0]
B.(﹣∞,1]
C.[﹣2,1]
D.[﹣2,0]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移 個單位后得到的圖象關(guān)于原點對稱,則函數(shù)f(x)的圖象( )
A.關(guān)于直線x= 對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于點( ,0)對稱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某軍工企業(yè)生產(chǎn)一種精密電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):其中x是儀器的月產(chǎn)量.
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,圓關(guān)于直線對稱,圓心在第二象限,半徑為.
(1)求圓的方程;
(2)直線與圓相切,且在軸、軸上的截距相等,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)=Asin(A>0,>0,<≤)在處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為。
(1)求的解析式;
(2)求函數(shù) 的值域。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com