“p∨q是真命題”是“?p為假命題”的(  )
A、必要不充分條件
B、充分不必要條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)復合命題之間的關(guān)系以及充分條件和必要條件的定義進行判斷.
解答: 解:若p∨q是真命題,則p,q至少有一個為真命題,則?p為假命題不一定成立.
若?p為假命題,則p為真命題,∴p∨q是真命題,
∴“p∨q是真命題”是“?p為假命題”的必要不充分條件,
故選:A.
點評:本題主要考查充分條件和必要條件的判斷,利用復合命題之間的關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),直線l與函數(shù)f(x)、g(x)的圖象都相切,且與函數(shù)f(x)的圖象的切點的橫坐標為1.
(1)求直線l的方程及實數(shù)m的值;
(2)若函數(shù)h(x)=f(x)-g′(x)(其中g(shù)′(x)是g(x)′的導函數(shù)),求函數(shù)h(x)的最大值;
(3)當0<b<a時,求證:alna+blnb>(a+b)ln
a+b
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1的左、右焦點,過F1的直線l與雙曲線的左、右兩支分別交于A、B兩點.若△ABF2是等邊三角形,則該雙曲線的離心率為( 。
A、2
B、
7
C、
13
D、
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
①命題“若x>0,則2x>1”的否命題是“若x≤0,則2x≤1”;
②關(guān)于x的不等式a<sin2x+
1
sin2x
恒成立,則a的取值范圍是a<3;
③函數(shù)f(x)=alog2|x|+x+b為奇函數(shù)的充要條件是a+b=0;
其中正確的個數(shù)是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖.若輸入x=7,則輸出k的值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們稱與函數(shù)C1:y=f(x)(x∈G,y∈N)的解析式和值域相同,定義域不同的函數(shù)C2:y=f(x)(x∈M,y∈N)為C1的異構(gòu)函數(shù),則f(x)=log2|x|(x∈{1,2,4})的異構(gòu)函數(shù)有( 。﹤.
A、8B、9C、26D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式
x2-8x+20
mx2-mx-1
<0對?x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,又∠ACB=120°,AB⊥PC.
(1)求證:平面PAC⊥平面ABC;
(2)求二面角M-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)求異面直線D1E與A1D所成角.
(2)AE等于何值時,二面角D1-EC-D的大小為
π
4

查看答案和解析>>

同步練習冊答案