【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,是橢圓上的一個動點(diǎn),且面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)直線斜率為,且與橢圓的另一個交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請說明理由.
【答案】(1) (2)見解析
【解析】
(1)由題可得當(dāng)為的短軸頂點(diǎn)時,的面積有最大值,根據(jù)橢圓的性質(zhì)得到、、的方程,解方程即可得到橢圓的方程;
(2)設(shè)出直線的方程,與橢圓方程聯(lián)立消去,得到關(guān)于的一元二次方程,表示出根與系數(shù)的關(guān)系,即可得到的中點(diǎn)坐標(biāo),要使,則直線為線段的垂直平分線,利用直線垂直的關(guān)系即可得到關(guān)于的式子,再利用基本不等式即可求出的取值范圍。
解(1)當(dāng)為的短軸頂點(diǎn)時,的面積有最大值
所以,解得,故橢圓的方程為:.
(2)設(shè)直線的方程為,
將代入,得;
設(shè),線段的中點(diǎn)為,
,
即
因為,所以直線為線段的垂直平分線,
所以,則,即,
所以,
當(dāng)時,因為,所以,
當(dāng)時,因為,所以.
綜上,存在點(diǎn),使得,且的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:和點(diǎn),P是圓上一點(diǎn),線段BP的垂直平分線交CP于M點(diǎn),則M點(diǎn)的軌跡方程為______;若直線l與M點(diǎn)的軌跡相交,且相交弦的中點(diǎn)為,則直線l的方程是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解小學(xué)生的體能情況,現(xiàn)抽取某小學(xué)六年級100名學(xué)生進(jìn)行跳繩測試,觀察記錄孩子們?nèi)昼妰?nèi)的跳繩個數(shù),將所得的數(shù)據(jù)整理后畫出頻率分布直方圖,跳繩個數(shù)的數(shù)值落在區(qū)間,,內(nèi)的頻率之比為.(計算結(jié)果保留小數(shù)點(diǎn)后面3位)
(Ⅰ)求這些學(xué)生跳繩個數(shù)的數(shù)值落在區(qū)間內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間內(nèi)抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意選取2個學(xué)生,求這2個學(xué)生跳繩個數(shù)的數(shù)值都在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正整數(shù)的數(shù)列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).
(1)若k=,t=,數(shù)列{an}是等差數(shù)列,求a1的值;
(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從年高考開始,高考物理、化學(xué)等六門選考科目的考生原始成績從高到低劃分為八個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為.選考科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.
某校級學(xué)生共人,以期末考試成績?yōu)樵汲煽冝D(zhuǎn)換了本校的等級成績,為學(xué)生合理選科提供依據(jù),其中物理成績獲得等級的學(xué)生原始成績統(tǒng)計如下
成績 | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人數(shù) | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)求物理獲得等級的學(xué)生等級成績的平均分(四舍五入取整數(shù));
(2)從物理原始成績不小于分的學(xué)生中任取名同學(xué),求名同學(xué)等級成績不相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,曲線的直角坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線分別相交于異于原點(diǎn)的點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店銷售剛剛上市的某高二數(shù)學(xué)單元測試卷,按事先擬定的價格進(jìn)行5天試銷,每種單價試銷1天,得到如下數(shù)據(jù):
單價x/元 | 18 | 19 | 20 | 21 | 22 |
銷量y/冊 | 61 | 56 | 50 | 48 | 45 |
(1)求試銷天的銷量的方差和關(guān)于的回歸直線方程;
附: .
(2)預(yù)計以后的銷售中,銷量與單價服從上題中的回歸直線方程,已知每冊單元測試卷的成本是10元,為了獲得最大利潤,該單元測試卷的單價應(yīng)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),曲線C2的方程為(x-1)2+(y-1)2=2.
(1)在以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C1,C2的極坐標(biāo)方程;
(2)直線θ=β(0<β<π)與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com