3.復(fù)數(shù)Z滿足(z-i)•i=1+i,則復(fù)數(shù)Z的模為( 。
A.2B.1C.$\sqrt{2}$D.$\sqrt{5}$

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求得z,再由復(fù)數(shù)模的計(jì)算公式得答案.

解答 解:∵(z-i)•i=1+i,
∴z-i=$\frac{1+i}{i}=\frac{(1+i)(-i)}{-{i}^{2}}=1-i$,
則z=1.
∴|z|=1.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a,b,c分別是△ABC中角A,B,C的對(duì)邊,G是△ABC的三條邊上中線的交點(diǎn),若$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,且$\frac{1}{a}+\frac{2}$≥cos2x-msinx(x∈R)恒成立,則實(shí)數(shù)m的取值范圍為[-4-2$\sqrt{2}$,4+2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義域?yàn)锳的函數(shù)f(x),若對(duì)任意的x1,x2∈A,都有f(x1+x2)-f(x1)≤f(x2),則稱函數(shù)f(x)為“定義域上的M函數(shù)”,給出以下五個(gè)函數(shù):
(1)f(x)=2x+3,x∈R;(2)$f(x)={x^2},x∈[-\frac{1}{2},\frac{1}{2}]$;(3)$f(x)={x^2}+1,x∈[-\frac{1}{2},\frac{1}{2}]$;(4)$f(x)=sinx,x∈[0,\frac{π}{2}]$;(5)f(x)=log2x,x∈[2,+∞).其中是“定義域上的M函數(shù)”的
有4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知奇函數(shù)f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是定義域?yàn)镽的減函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=|x+a|+|x-2|,且f(x)≤|x-4|的解集包含[1,2],則a的取值范圍為[-3,0]..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四面體A-BCD中,F(xiàn)、E、H分別是棱AB、BD、AC的中點(diǎn),G為DE的中點(diǎn).
(Ⅰ)證明:直線EF∥平面ACD
(Ⅱ)證明:直線HG∥平面CEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知某圓的內(nèi)接正方形ABCD相對(duì)的兩個(gè)頂點(diǎn)的坐標(biāo)分別為A(5,6),C(3,4),那么這個(gè)圓的方程為(x-4)2+(y-5)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=a(x+1)2-4lnx,a∈R.
(1)若x=1是f(x)的極值點(diǎn),求a的值;
(2)已知點(diǎn)P(0,1)和函數(shù)f(x)圖象上動(dòng)點(diǎn)M(m,f(m)),對(duì)任意m∈[1,e],直線PM傾斜角都是鈍角,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知tanθ=-2,則$\frac{7sinθ-3cosθ}{4sinθ+5cosθ}$的值為$\frac{17}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案