若坐標原點O和點F(-2,0)分別為雙曲線-y2=1(a>0)的中心和左焦點,點P為雙曲線右支上的任意一點,則·的取值范圍為

[  ]

A.[3-2,+∞)

B.[3+2,+∞)

C.[-,+∞)

D.[,+∞)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點,過點M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
(Ⅰ)寫出拋物線C2的標準方程;
(Ⅱ)若
AM
=
1
2
MB
,求直線l的方程;
(Ⅲ)若坐標原點O關于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門二模)已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點,直線l過點M(4,0).
(1)寫出拋物線C2的標準方程;
(2)若坐標原點O關于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1C的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•南匯區(qū)二模)已知動直線y=kx交圓(x-2)2+y2=4于坐標原點O和點A,交直線x=4于點B,若動點M滿足
OM
=
AB
,動點M的軌跡C的方程為F(x,y)=0.
(1)試用k表示點A、點B的坐標;
(2)求動點M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個方面的性質,請你選擇其中的三個方面進行研究,并說明理由(若你研究的方面多于三個,我們將只對試卷解答中的前三項予以評分).
①對稱性;(2分)
②頂點坐標(定義:曲線與其對稱軸的交點稱為該曲線的頂點);(2分)
③圖形范圍;(2分)
④漸近線;(3分)
⑤對方程F(x,y)=0,當y≥0時,函數(shù)y=f(x)的單調性.(3分)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市浦東新區(qū)、南匯區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知動直線y=kx交圓(x-2)2+y2=4于坐標原點O和點A,交直線x=4于點B,若動點M滿足,動點M的軌跡C的方程為F(x,y)=0.
(1)試用k表示點A、點B的坐標;
(2)求動點M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個方面的性質,請你選擇其中的三個方面進行研究,并說明理由(若你研究的方面多于三個,我們將只對試卷解答中的前三項予以評分).
①對稱性;(2分)
②頂點坐標(定義:曲線與其對稱軸的交點稱為該曲線的頂點);(2分)
③圖形范圍;(2分)
④漸近線;(3分)
⑤對方程F(x,y)=0,當y≥0時,函數(shù)y=f(x)的單調性.(3分)

查看答案和解析>>

同步練習冊答案