【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時(shí),.若對于任意,都有,則實(shí)數(shù)的取值范圍為________.
【答案】
【解析】
f(x)為周期為4的函數(shù),且是奇函數(shù).0在函數(shù)定義域內(nèi),故f(0)=0,得a=1,先得到[﹣1,3]一個(gè)周期內(nèi)f(x)的圖象,求出該周期內(nèi)使f(x)≥1﹣log23成立的x的范圍,從而推出的范圍,再分t的范圍討論即可.
解:由題意,f(x)為周期為4的函數(shù),且是奇函數(shù).0在函數(shù)定義域內(nèi),故f(0)=0,得a=1,
所以當(dāng)0≤x≤1時(shí),f(x)=log2(x+1),
當(dāng)x∈[﹣1,0]時(shí),﹣x∈[0,1],此時(shí)f(x)=﹣f(﹣x)=﹣log2(﹣x+1),
又知道f(x+2)=﹣f(x)=f(﹣x),
所以f(x)以x=1為對稱軸.且當(dāng)x∈[﹣1,1]時(shí)f(x)單調(diào)遞增,
當(dāng)x∈[1,3]時(shí)f(x)單調(diào)遞減.
當(dāng)x∈[﹣1,3]時(shí),令f(x)=1﹣log23,得x,或x,
所以在[﹣1,3]內(nèi)當(dāng)f(x)>1﹣log23時(shí),x∈[,].
設(shè)g(x),若對于x屬于[0,1]都有,
因?yàn)?/span>g(0)∈[,].
故g(x)∈[,].
①當(dāng)0時(shí),g(x)在[0,1]上單調(diào)遞減,
故g(x)∈[t,][,].得t≥0,無解.
②0≤t≤1時(shí),,此時(shí)g(t)最大,g(1)最小,
即g(x)∈[t﹣1,][,].得t∈[0,1].
③當(dāng)1<t≤2時(shí),即,此時(shí)g(0)最小,g(t)最大,
即g(x)∈[,][,].得t∈(1,2],
④當(dāng)t>2時(shí),g(x)在[0,1]上單調(diào)遞增,
故g(x)∈[,t][,].解得,t∈(2,3],
綜上t∈[0,3].
故填:[0,3].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的參數(shù)方程;
(2)若曲線與曲線,在第一象限分別交于兩點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為了解四年級學(xué)生的家庭作業(yè)用時(shí)情況,從本校四年級隨機(jī)抽取了一批學(xué)生進(jìn)行調(diào)查,并繪制了學(xué)生作業(yè)用時(shí)的頻率分布直方圖,如圖所示.
(1)估算這批學(xué)生的作業(yè)平均用時(shí)情況;
(2)作業(yè)用時(shí)不能完全反映學(xué)生學(xué)業(yè)負(fù)擔(dān)情況,這與學(xué)生自身的學(xué)習(xí)習(xí)慣有很大關(guān)系如果用時(shí)四十分鐘之內(nèi)評價(jià)為優(yōu)異,一個(gè)小時(shí)以上為一般,其它評價(jià)為良好.現(xiàn)從優(yōu)異和良好的學(xué)生里面用分層抽樣的方法抽取300人,其中女生有90人(優(yōu)異20人).請完成列聯(lián)表,并根據(jù)列聯(lián)表分析能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為學(xué)習(xí)習(xí)慣與性別有關(guān)系?
男生 | 女生 | 合計(jì) | |
良好 | |||
優(yōu)異 | |||
合計(jì) |
附:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,
(1)若直線過定點(diǎn),且與圓C相切,求的方程.
(2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)總體容量為60,其中的個(gè)體編號為00,01,02,…,59.現(xiàn)需從中抽取一個(gè)容量為7的樣本,請從隨機(jī)數(shù)表的倒數(shù)第5行(下表為隨機(jī)數(shù)表的最后5行)第11~12列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號碼是_____________.
95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95
38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80
82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50
24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49
96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各名,將男性、女性使用微信的時(shí)間分成組:,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)根據(jù)女性頻率分布直方圖,估計(jì)女性使用微信的平均時(shí)間;
(2)若每天玩微信超過小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為“微信控”與“性別”有關(guān)?
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯(cuò)誤的是( )
A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加
B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍
C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍
D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).若,且,求直線的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com