16.已知函數(shù)f(x)=ax2009+bsinx,且f(m)=2,則f(-m)=(  )
A.0B.1C.-1D.-2

分析 先判斷函數(shù)f(x)為奇函數(shù),再利用奇函數(shù)的性質求得f(-m)的值.

解答 解:∵函數(shù)f(x)=ax2009+bsinx為奇函數(shù),且f(m)=2,則f(-m)=-f(m)=-2,
故選:D.

點評 本題主要考查函數(shù)的奇偶性的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn=2n2-30n.
(1)這個數(shù)列是等差數(shù)列嗎?求出它的通項公式;
(2)求使得Sn最小的序號n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在區(qū)間[0,9]內任取兩個數(shù),則這兩個數(shù)的平方和也在[0,9]內的概率為$\frac{π}{36}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列命題的正確的是( 。
A.若直線 l上有無數(shù)個點不在平面 α內,則  l∥α
B.若直線 l與平面α平行,則l與平面α內的任意一條直線都平行
C.如果兩條平行直線中的一條與一個平面α平行,那么另一條也與這個平面平行.
D.若直線l與平面α平行,則l與平面α內的任意一條直線都沒有公共點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.F是橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點,P為C上一動點,點A坐標為(1,1),則|PA|+|PF|的最小值為( 。
A.4+$\sqrt{5}$B.4-$\sqrt{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設冪函數(shù)f(x)=(m+3)xm,則f(2)-f(-2)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知圓C的方程為x2+y2-4x-2y=0,若傾斜角為$\frac{π}{4}$的直線l被圓C所截得的弦長為2$\sqrt{3}$,則直線l的方程為(  )
A.y=x+1B.y=x-3C.y=x+1或y=x-3D.y=x+1或y=x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.入射光線沿直線x-2y+3=0射向直線l:y=x,被l反射后的光線所在直線的方程是( 。
A.2x+y-3=0B.2x-y-3=0C.2x+y+3=0D.2x-y+3=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.下列命題:①a>b⇒c-a<c-b;②a>b,$c>0⇒\frac{c}{a}<\frac{c}$;③a>b⇒ac2>bc2;④a3>b3⇒a>b,其中正確的命題個數(shù)是2.

查看答案和解析>>

同步練習冊答案