【題目】5名男生3名女生參加升旗儀式:

(1)站兩橫排,3名女生站前排,5名男生站后排有多少種站法?

(2)站兩縱列,每列4人,每列都有女生且女生站在男生前面,有多少種排列方法?

【答案】(1); (2) 。

【解析】

1)分兩步求解:先排3名女生,再排5名男生,根據(jù)分步乘法計(jì)數(shù)原理可得所求.(2)先將女生分為兩組,將1名女生排在其中一列的最前位置上,再在其后排上三名男生;然后將另外兩名女生排在另一列的前兩個(gè)位置上,并在其后排入兩名男生即可。

1)分兩步求解:

①先排前排的3名女生,有種不同的方法;

②再排后排的5名男生,有種不同的方法.

由分步乘法計(jì)數(shù)原理可得共有種不同的站法.

2)將3名女生分為兩組,有種方法,然后選擇其中的一列將1名女生排在最前的一個(gè)位置上,有種方法,然后再?gòu)?/span>5名男生中選取3名排在該女生的后邊,有種方法;然后再排另外一列,將剩余的2名女生排再該列的前邊有種方法,再將剩余的2名男生排在這2名女生的后邊,有種方法.

由分步乘法計(jì)數(shù)原理可得不同的排列方法有種.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬(wàn)元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬(wàn)元,年產(chǎn)量為)件.當(dāng)時(shí),年銷售總收人為()萬(wàn)元;當(dāng)時(shí),年銷售總收人為萬(wàn)元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤(rùn)為萬(wàn)元.(年利潤(rùn)=年銷售總收入一年總投資)

(1)(萬(wàn)元)()的函數(shù)關(guān)系式;

(2)當(dāng)該工廠的年產(chǎn)量為多少件時(shí),所得年利潤(rùn)最大?最大年利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)環(huán)境,某單位采用新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品。已知該單位每月的處理量最多不超過(guò)300噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為300元。

1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

2)要保證該單位每月不虧損,則每月處理量應(yīng)控制在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤(rùn)與投資量的單位:萬(wàn)元).

(1)分別將A、B兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;

(2)該公司已有10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品中,問(wèn):怎樣分配這10萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)求的定義域;并證明是定義域上的奇函數(shù);

2)判斷在定義域上的單調(diào)性(無(wú)需證明);

3)求使不等式解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn))處的切線方程是.

(I)求的值及函數(shù)的最大值

(Ⅱ)若實(shí)數(shù)滿足.

()證明:;

()若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人輪流投籃,每人每次投一次籃,先投中者獲勝.投籃進(jìn)行到有人獲勝或每人都已投球3次時(shí)結(jié)束.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響現(xiàn)由甲先投.

1)求甲獲勝的概率;

2)求投籃結(jié)束時(shí)甲的投籃次數(shù)X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓,其長(zhǎng)軸是短軸的兩倍,以某短軸頂點(diǎn)和長(zhǎng)軸頂點(diǎn)為端點(diǎn)的線段作為直徑的圓的周長(zhǎng)為,直線與橢圓交于兩點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線的垂線,垂足為.若,求點(diǎn)的軌跡方程;

(3)設(shè)直線,的斜率分別為,,其中.設(shè)的面積為.以、為直徑的圓的面積分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線及圓的極坐標(biāo)方程;

(Ⅱ)若直線與圓交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案