分析 由特殊點的坐標(biāo)求出φ的值,再利用余弦函數(shù)的圖象特征求得x0的值,可得要求式子的值.
解答 解:根據(jù)函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象,可得cosφ=$\frac{\sqrt{3}}{2}$,∴φ=$\frac{π}{6}$,
∴f(x)=cos(πx+$\frac{π}{6}$).
再根據(jù)πx0+$\frac{π}{6}$=$\frac{11π}{6}$,可得x0=$\frac{5π}{3}$,∴f(3x0)=cos(5π+$\frac{π}{6}$)=-cos$\frac{π}{6}$=-$\frac{\sqrt{3}}{2}$,
故答案為:-$\frac{\sqrt{3}}{2}$.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由特殊點的坐標(biāo)求出φ的值,余弦函數(shù)的圖象特征,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<3} | B. | {-1,0,1} | C. | {x|-1<x<2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=5-2x | C. | y=|x| | D. | y=-2x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
節(jié) 氣 | 冬至 | 小寒 (大雪) | 大寒 (小雪) | 立春 (立冬) | 雨水 (霜降) | 驚蟄 (寒露) | 春分 (秋分) | 清明 (白露) | 谷雨 (處暑) | 立夏 (立秋) | 小滿 (大暑) | 芒種 (小暑) | 夏至 |
晷影 長 (寸) | 135.0 | $125.\frac{5}{6}$ | $115.1\frac{4}{6}$ | $105.2\frac{3}{6}$ | $95.3\frac{2}{6}$ | $85.4\frac{2}{6}$ | 75.5 | $66.5\frac{5}{6}$ | $55.6\frac{4}{6}$ | $45.7\frac{3}{6}$ | $35.8\frac{2}{6}$ | $25.9\frac{1}{6}$ | 16.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{{3\sqrt{2}}}{2},\sqrt{5}]$ | B. | $[\frac{{3\sqrt{2}}}{2},5]$ | C. | $[\frac{9}{2},5]$ | D. | $[\sqrt{5},\frac{9}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $1-\frac{{\sqrt{3}}}{2}$ | D. | $1-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com