7.如圖由曲線y=x2+2x與y=2x+1所圍成的陰影部分的面積是(  )
A.0B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

分析 利用定積分的幾何意義表示曲邊梯形的面積,然后計算.

解答 解:由題意由曲線y=x2+2x與y=2x+1所圍成的陰影部分的面積是${∫}_{-1}^{1}(2x+1-{x}^{2}-2x)dx$=${∫}_{-1}^{1}(1-{x}^{2})dx$=$(x-\frac{1}{3}{x}^{3}){|}_{-1}^{1}$=$\frac{4}{3}$;
故選C.

點評 本題考查了利用定積分求封閉圖形的面積;關(guān)鍵是正確利用定積分表示面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐B-ACDE中,底面ACDE是直角梯形,AC垂直于AE和CD,BA⊥底面ACDE,且AB=AC=DC=1,EA=$\frac{1}{2}$.
(Ⅰ)求證:平面BCD⊥平面ABC;
(Ⅱ)求平面BDE與平面ABC所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若abcosC+bccosA+cacosB=c2,則△ABC的形狀是(  )
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.化簡$\frac{{cos(π+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(\frac{9π}{2}+α)}}$,得到的結(jié)果是( 。
A.-sinαB.cosαC.-tanαD.-$\frac{cosα}{sinα}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“因為指數(shù)函數(shù)y=ax是增函數(shù),而y=($\frac{1}{2}$)x是指數(shù)函數(shù),所以y=($\frac{1}{2}$)x是增函數(shù)”,導(dǎo)致上面推理錯誤的原因是( 。
A.大前提錯B.小前提錯
C.推理形式錯D.大前提和小前提都錯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(x2+$\frac{1}{x^2}$+2)5展開式中x4項的系數(shù)為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.把7個字符1,1,1,A,A,α,β排成一排,要求三個“1”兩兩不相鄰,且兩個“A“也不相鄰,則這樣的排法共有( 。
A.12種B.30種C.96種D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線3x-ay+8=0與直線x+2y+1=0垂直,則a的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=sin1-cosx,則f′(1)=(  )
A.sin1+cos1B.cos1C.sin1D.sin1-cos1

查看答案和解析>>

同步練習(xí)冊答案