2.命題“若a>b,則a+c>b+c”的逆命題是( 。
A.若a>b,則a+c≤b+cB.若a+c≤b+c,則a≤bC.若a+c>b+c,則a>bD.若a≤b,則a+c≤b+c

分析 根據(jù)命題“若p,則q”的逆命題是“若q,則p”,寫出即可.

解答 解:命題“若a>b,則a+c>b+c”的逆命題是
“若a+c>b+c,則a>b”.
故選:C.

點評 本題考查了命題與它的逆命題的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.某公司準備將1000萬元資金投入到市環(huán)保工程建設中,現(xiàn)有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤ξ1(萬元)的概率分布列如表所示:
ξ1110120170
Pm0.4n
且ξ1的期望E(ξ1)=120;若投資乙項目一年后可獲得的利潤ξ2(萬元)與該項目建設材料的成本有關,在生產的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進行產品的價格調整,兩次調整相互獨立且調整的概率分別為p(0<p<1)和1-p.若乙項目產品價格一年內調整次數(shù)X(次數(shù))與ξ2的關系如表所示:
X012
ξ241.2117.6204.0
(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設F(c,0)是雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點,$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$為直線上一點,且直線垂直于x軸,垂足為M,若△PMF等腰三角形,則E的離心率為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某經銷商試銷A、B兩種商品一個月(30天)的記錄如下:
日銷售量(件)012345
商品A的頻數(shù)357753
商品B的頻數(shù)446853
若售出每種商品1件均獲利40元,用X,Y表示售出A、B商品的日利潤值(單位:元).將頻率視為概率.
(1)設兩種商品的銷售量互不影響,求兩種商品日獲利值均超過100元的概率;
(2)由于某種原因,該商家決定只選擇經銷A、B商品的一種,你認為應選擇哪種商品,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.現(xiàn)從6人中選4人去參加某娛樂活動,該活動共有A,B,C,D四個游戲.要求每個游戲有一人參加,且一人只能參加一個游戲,如果這6人中甲,乙兩人不熊參加D游戲,則不同的選擇方案種數(shù)有( 。
A.264B.240C.216D.72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知定義在R上的奇函數(shù)f(x)滿足f(x+3)=f(x),且當x∈[0,$\frac{3}{2}$)時,f(x)=一x3.則f($\frac{11}{2}$)=( 。
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-$\frac{125}{8}$D.$\frac{125}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓$E:\frac{x^2}{5}+\frac{y^2}{4}=1$的右焦點為F,設直線l:x=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于A,B兩點,M為線段EF的中點.
(I)若直線l1的傾斜角為$\frac{π}{4}$,|AB|的值;
(Ⅱ)設直線AM交直線l于點N,證明:直線BN⊥l.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=log4(ax2+2x+3),a∈R
(1)若f(x)的值域為[$\frac{1}{2}$,+∞),求a;
(2)若f(x)在區(qū)間(-$\frac{1}{2}$,+∞)上是增加的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=lnx+(e-a)x-b,其中e為自然對數(shù)的底數(shù).若不等式f(x)≤0恒成立,則$\frac{a}$的最小值為-$\frac{1}{e}$.

查看答案和解析>>

同步練習冊答案