【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系.每年交強(qiáng)險(xiǎn)最終保險(xiǎn)費(fèi)計(jì)算方法是:交強(qiáng)險(xiǎn)最終保險(xiǎn)費(fèi),其中a為交強(qiáng)險(xiǎn)基礎(chǔ)保險(xiǎn)費(fèi),A為與道路交通事故相聯(lián)系的浮動(dòng)比率,同時(shí)滿足多個(gè)浮動(dòng)因素的,按照向上浮動(dòng)或者向下浮動(dòng)比率的高者計(jì)算.按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)基礎(chǔ)費(fèi)率表》的規(guī)定:普通6座以下私家車(chē)的交強(qiáng)險(xiǎn)基礎(chǔ)保險(xiǎn)費(fèi)950元,交強(qiáng)險(xiǎn)費(fèi)率浮動(dòng)因素及比率如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

類型

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個(gè)年度發(fā)生兩次及以上有責(zé)任道路交通事故

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了100輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)結(jié)果如下表:

類型

數(shù)量

25

10

10

25

20

10

以這100輛該品牌車(chē)的投保類型的頻率代替一輛車(chē)投保類型的概率,完成下列問(wèn)題.

1)記X為一輛該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望(數(shù)學(xué)期望值保留到個(gè)位數(shù)字);

2)某二手車(chē)銷售商專門(mén)銷售這一品牌的二手車(chē),且將經(jīng)銷商購(gòu)車(chē)后下一年的交強(qiáng)險(xiǎn)最終保險(xiǎn)費(fèi)高于交強(qiáng)險(xiǎn)基礎(chǔ)保險(xiǎn)費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損3000元,購(gòu)進(jìn)一輛非事故車(chē)盈利5000.

①若該銷售商購(gòu)進(jìn)三輛(車(chē)齡已滿三年)該品牌二手車(chē),求這三輛車(chē)中至少有一輛是事故車(chē)的概率;

②若該銷售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望.

【答案】1)分布列見(jiàn)解析;926;(2)①;②26萬(wàn)元.

【解析】

(1)由題意可知X的所有可能取值為0.9a0.8a,0.7aa,1.1a1.3a,,由統(tǒng)計(jì)數(shù)據(jù)分別求出相應(yīng)的概率,由此求出X的分布列和數(shù)學(xué)期望;

2)①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車(chē)齡已滿三年的二手車(chē)為事故車(chē)的概率,由此能求出三輛車(chē)中至少有一輛是事故車(chē)的概率;

②設(shè)該銷售商購(gòu)進(jìn)一輛二手車(chē)獲得的利潤(rùn)為Y,則Y的所有可能取值為,5000.由此能求出Y的分布列和數(shù)學(xué)期望,從而可得該銷售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿三年)該品牌二手車(chē)獲得利潤(rùn)的期望

1)由題意可知X的所有可能取值為0.9a,0.8a0.7a,a1.1a,1.3a,

由統(tǒng)計(jì)數(shù)據(jù)可知:

,

,,

,,

所以X的分布列為:

X

.

2)①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車(chē)齡已滿三年的二手車(chē)為事故車(chē)的概率,

則三輛車(chē)中至少有一輛事故車(chē)的概率為;

②設(shè)該銷售商購(gòu)進(jìn)一輛二手車(chē)獲得的利潤(rùn)為Y

Y的所有可能取值為,5000.

所以Y的分布列為:

Y

5000

所以.

所以該銷售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿三年)該品牌的二手車(chē)獲得利潤(rùn)的期望為

萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ1.

1)求C1的極坐標(biāo)方程,并求C1C2交點(diǎn)的極坐標(biāo)

2)若曲線C3θβρ0)與C1,C2的交點(diǎn)分別為M,N,求|OM||ON|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò)橢圓的左、右焦點(diǎn)和短軸的端點(diǎn)(點(diǎn)在點(diǎn)上方).為圓上的動(dòng)點(diǎn)(點(diǎn)不與重合),直線分別與橢圓交于點(diǎn),其中點(diǎn)構(gòu)成四邊形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國(guó)數(shù)學(xué)家洛薩克拉茨在年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,最終都能夠得到,得到即終止運(yùn)算,己知正整數(shù)經(jīng)過(guò)次運(yùn)算后得到,則的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年初,我國(guó)突發(fā)新冠肺炎疫情,疫情期間中小學(xué)生“停課不停學(xué)”.已知某地區(qū)中小學(xué)生人數(shù)情況如甲圖所示,各學(xué)段學(xué)生在疫情期間“家務(wù)勞動(dòng)”的參與率如乙圖所示.為了進(jìn)一步了解該地區(qū)中小學(xué)生參與“家務(wù)勞動(dòng)”的情況,現(xiàn)用分層抽樣的方法抽取4%小學(xué)初中高中學(xué)段的學(xué)生進(jìn)行調(diào)查,則抽取的樣本容量、抽取的高中生家中參與“家務(wù)勞動(dòng)”的人數(shù)分別為( )

A.2750,200B.2750,110C.1120,110D.1120,200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為.

(1)求橢圓的方程;

(2)若動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),分別過(guò)兩點(diǎn)作,垂足分別為,且記為點(diǎn)到直線的距離, 為點(diǎn)到直線的距離,為點(diǎn)到點(diǎn)的距離,試探索是否存在最大值.若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線與曲線的公共點(diǎn)的極坐標(biāo);

2)若點(diǎn)的極坐標(biāo)為,設(shè)曲線軸相交于點(diǎn),則在曲線上是否存在點(diǎn),使得,若存在,求出點(diǎn)的直角坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且以橢圓上的點(diǎn)和長(zhǎng)軸兩端點(diǎn)為頂點(diǎn)的三角形的面積的最大值為.

1)求橢圓的方程;

2)經(jīng)過(guò)定點(diǎn)的直線交橢圓于不同的兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試證明:直線軸的交點(diǎn)為一個(gè)定點(diǎn),且為原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,M,NP分別是C1D1,BCA1D1的中點(diǎn),有下列四個(gè)結(jié)論:

APCM是異面直線;②APCM,DD1相交于一點(diǎn);③MNBD1;

MN∥平面BB1D1D

其中所有正確結(jié)論的編號(hào)是(  )

A.①④B.②④C.①④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案