【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:
(1)如果不超過200元,則不給予優(yōu)惠;
(2)如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;
(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.
某人單獨購買A,B商品分別付款168元和423元,假設他一次性購買A,B兩件商品,則應付款是
A. 413.7元 B. 513.7元 C. 546.6元 D. 548.7元
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點A,B且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司引進一條價值30萬元的產(chǎn)品生產(chǎn)線,經(jīng)過預測和計算,得到生產(chǎn)成本降低萬元與技術改造投入萬元之間滿足:①與和的乘積成正比;②當時, ,并且技術改造投入比率, 為常數(shù)且.
(1)求的解析式及其定義域;
(2)求的最大值及相應的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于實數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是
①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;
③方程有無數(shù)個根; ④函數(shù)f(x)是增函數(shù).
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C: (a>b>0)的一條準線方程為x=,離心率為.
(1)求橢圓C的方程;
(2)如圖,設A為橢圓的上頂點,過點A作兩條直線AM,AN,分別與橢圓C相交于M,N兩點,且直線MN垂直于x軸.
① 設直線AM,AN的斜率分別是k1, k2,求k1k2的值;
② 過M作直線l1⊥AM,過N作直線l2⊥AN,l1與l2相交于點Q.試問:點Q是否在一條定直線上?若在,求出該直線的方程;若不在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域為(-3,3),
滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(x-y),當x<0時,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,且anan+1=2n , n∈N* , 則數(shù)列{an}的通項公式為( )
A.an=( )n﹣1
B.an=( )n
C.an=
D.an=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水 (單位:千克)清洗該蔬菜千克后,蔬菜上殘留的農(nóng)藥 (單位:微克)的統(tǒng)計表:
在坐標系中描出散點圖,并判斷變量與的相關性;
(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程,令,計算平均值和,完成以下表格(填在答題卡中),求出與的回歸方程.(精確到0.1)
(3)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請估計需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))(附:線性回歸方程計算公式: , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com