19.從1,2,3,4,5,6,7,8,9中,隨機取出3個不同整數(shù),求它們的和為3的倍數(shù)的概率.

分析 本題應先用組合數(shù)公式計算出總的基本事件數(shù),再用研究和為3的倍數(shù)的事件包含的基本事件數(shù)即可.

解答 解:從1,2,3,4,5,6,7,8,9中,隨機取出3個不同整數(shù),所有基本事件的個數(shù)為:${C}_{9}^{3}$=84.
它們的和為3的倍數(shù),共有:①3個數(shù)都是3的倍數(shù),有1種方法,
②3個數(shù)除以3都余1,有1種方法,
③3個數(shù)除以3都余2,有1種方法,
④一個除以3余1,一個除以3余2,一個是3的倍數(shù),方法有:3×3×3=27(種),
所以,不同取法一共有:1+1+1+27=30(種),
它們的和為3的倍數(shù)的概率:$\frac{30}{84}$=$\frac{5}{14}$.
故答案為:$\frac{5}{14}$.

點評 本題考查等可能事件的概率,考查了用組合數(shù)公式與分面原理計數(shù),是概率中的基本題型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,E是直角梯形ABCD底邊AB的中點,AB=2DC=2BC,將△ADE沿DE折起形成四棱錐A-BCDE.
(1)求證:DE⊥平面ABE;
(2)若二面角A-DE-B為60°,求二面角A-DC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在空間四邊形ABCD的邊AB、BC、CD、DA上分別取E、F、G、H四點,如果EF與HG交于點M,那么(  )
A.M一定在直線AC上B.M一定在直線CD上
C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知$f(x)=\left\{\begin{array}{l}{x^2}+4x,(x≥0)\\ 4x-{x^2},(x<0)\end{array}\right.$,若f(2-a)>f(4+3a),則實數(shù)a的取值范圍為(-∞,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在邊長為1的等邊三角形ABC中,設$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,
(1)用向量$\overrightarrow{AB}$,$\overrightarrow{AC}$表示向量$\overrightarrow{AD}$和$\overrightarrow{BE}$,并求$\overrightarrow{AD}$•$\overrightarrow{BE}$;
(2)求$\overrightarrow{AD}$在$\overrightarrow{BE}$方向上的射影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知a>b>0,且m=a+$\frac{1}{(a-b)b}$.
(1)試利用基本不等式求m的最小值t;
(2)若實數(shù)x,y,z滿足x2+4y2+z2=t,求證:|x+2y+z|≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=3lnx-$\frac{1}{2}$ax2-2x,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在底面為菱形的四棱錐P-ABCD中,PA⊥平面ABCD,E為PD的中點,AB=2,∠ABC=$\frac{π}{3}$.
(1)求證:PB∥平面AEC;
(2)若三棱錐P-AEC的體積為1,求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.計算0.25×(-$\frac{1}{2}$)-4-4÷($\sqrt{5}$-1)0-($\frac{1}{16}$)${\;}^{-\frac{1}{2}}$=-4.

查看答案和解析>>

同步練習冊答案