【題目】已知橢圓的右焦點為,點為橢圓上的動點,若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設不過原點的直線與橢圓 交于兩點,若直線的斜率依次成等比數(shù)列,求面積的最大值

【答案】(1) .

(2)1.

【解析】分析第一問根據(jù)橢圓上的點到焦點的距離的最大值和最小值分別是,結(jié)合已知條件,建立關于的方程組,從而求得的值,借助于橢圓中之間的關系,求得的值,從而求得橢圓的方程;第二問設出直線的方程,將其與橢圓聯(lián)立,寫出兩根和與兩根積,根據(jù)條件,確定出斜率的值,之后將面積轉(zhuǎn)化為關于b的式子,利用二次函數(shù)的最值求得結(jié)果.

詳解:(I)由已知得:

橢圓方程為

(II)設(易知存在斜率,且),設

由條件知:

聯(lián)立(1)(2)得:

到直線的距離

所以當時:

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲和乙玩一個猜數(shù)游戲,規(guī)則如下:已知六張紙牌上分別寫有1﹣六個數(shù)字,現(xiàn)甲、乙兩人分別從中各自隨機抽取一張,然后根據(jù)自己手中的數(shù)推測誰手上的數(shù)更大.甲看了看自己手中的數(shù),想了想說:我不知道誰手中的數(shù)更大;乙聽了甲的判斷后,思索了一下說:我知道誰手中的數(shù)更大了.假設甲、乙所作出的推理都是正確的,那么乙手中可能的數(shù)構成的集合是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(α)=.

(1)化簡f(α);

(2)若f(α)=,且<α<,求cosα-sinα的值;

(3)若α=-,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且,若函數(shù)6 個零點,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,命題:對,不等式恒成立;命題,使得成立.

(1)若為真命題,求的取值范圍;

(2)當時,若假,為真,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC的頂點坐標分別是A7,﹣3),B2,﹣8),C5,1),

1)求AB垂直平分線的方程(化為一般式);

2)求ABC外接圓的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】RtABC中,∠B90°,BC6,AB8,點MABC內(nèi)切圓的圓心,過點M作動直線l與線段ABAC都相交,將ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當日銷售完畢,日銷售額為萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過段時間的產(chǎn)銷, 得到了的一組統(tǒng)計數(shù)據(jù)如下表:

日產(chǎn)量

1

2

3

4

5

日銷售量

5

12

16

19

21

(1)請判斷中,哪個模型更適合到畫之間的關系?可從函數(shù)增長趨勢方面給出簡單的理由;

(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關于的回歸方程,并估計當日產(chǎn)量時,日銷售額是多少?

參考數(shù)據(jù):,

線性回歸方程中,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的圓心為(1,1),直線與圓C相切.

1)求圓C的標準方程;

2)若直線過點(2,3),且被圓C所截得的弦長為2,求直線的方程.

查看答案和解析>>

同步練習冊答案