【題目】一次數(shù)學(xué)競(jìng)賽,共有6道選擇題,規(guī)定每道題答對(duì)得5分,不答得1分,答錯(cuò)倒扣1分.一個(gè)由若干名學(xué)生組成的學(xué)習(xí)小組參加了這次競(jìng)賽,這個(gè)小組的人數(shù)與總得分情況為( 。

A. 當(dāng)小組的總得分為偶數(shù)時(shí),則小組人數(shù)一定為奇數(shù)

B. 當(dāng)小組的總得分為奇數(shù)時(shí),則小組人數(shù)一定為偶數(shù)

C. 小組的總得分一定為偶數(shù),與小組人數(shù)無關(guān)

D. 小組的總得分一定為奇數(shù),與小組人數(shù)無關(guān)

【答案】C

【解析】

先假設(shè)一名同學(xué)全答對(duì),得出得分的奇偶,然后再根據(jù)不答或答錯(cuò)得分的奇偶性進(jìn)行分析即可。

每個(gè)人得的總分是6×5=30,

在滿分的基礎(chǔ)上,若1題不答,則總分少4分,若1題答錯(cuò),則總分少6分,即在滿分的基礎(chǔ)上若題不答,則總分少分,若題答錯(cuò),則總分少分,則每個(gè)人的得分一定是偶數(shù),則小組的總得分也是偶函數(shù),與小組人數(shù)無關(guān),

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,若過點(diǎn)且斜率為1的直線與拋物線交于 兩點(diǎn),且.

(1)求拋物線的方程;

(2)若平行于的直線與拋物線相切于點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)集合,,對(duì)于任意,定義,對(duì)任意,定義,記為集合的元素個(gè)數(shù),求的值;

2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中,若存在,求出所有的,若不存在,說明理由;

3)已知當(dāng)時(shí),有,根據(jù)此信息,若對(duì)任意,都有,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線經(jīng)過點(diǎn),且傾斜角為

(1)寫出直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,設(shè),分別為橢圓的右頂點(diǎn),下頂點(diǎn),的面積為1.

(1)求橢圓的方程;

(2)已知不經(jīng)過點(diǎn)的直線交橢圓于,兩點(diǎn),線段的中點(diǎn)為,若,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為,設(shè)M,N是橢圓C上位于x軸上方的兩動(dòng)點(diǎn),且直線與直線平行,交于點(diǎn)D

(Ⅰ)求的坐標(biāo);

(Ⅱ)求的最小值;

(Ⅲ)求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn),橢圓過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)的直線(不過坐標(biāo)原點(diǎn))與橢圓交于,兩點(diǎn),且點(diǎn)軸上方,點(diǎn)軸下方,,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線是拋物線)和圓C的公切線,切點(diǎn)(在第一象限)分別為P、Q.F為拋物線的焦點(diǎn),切線交拋物線的準(zhǔn)線于A,且.

1)求切線的方程;

2)求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長(zhǎng)為,圓的面積小于13.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案