(2012•閔行區(qū)一模)對于
m
=(x1,y1),
n
=(x2,y2),規(guī)定向量的“*”運算為:
m
*
n
=(x1x2,y1y2).若
a
=(x,1),
b
=(-1,x),
e1
=(1,0),
e2
=(0,1).解不等式
(
a
b
)•
e1
+1 
(
a
*
b
) •
e2
+1
>1
分析:利用已知定義先把所求的不等式進行轉(zhuǎn)化,然后根據(jù)分式不等式的解法即可求解
解答:解:由題意可得,
(
a
*
b
)•
e1
+1
(
a
*
b
) •
e2
+1
=
-x+1
x+1
>1
(6分)
-x+1
x+1
-1>0

2x
x+1
<0

∴-1<x<0   (12分)
點評:本題以新定義為載體,主要考查了向量的數(shù)量積的運算,分式不等式的求解,屬于知識的簡單應用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)設等差數(shù)列{an}的首項及公差均是正整數(shù),前n項和為Sn,且a1>1,a4>6,S3≤12,則a2012=
4024
4024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)在一圓周上給定1000個點.(如圖)取其中一點標記上數(shù)1,從這點開始按順時針方向數(shù)到第二個點標記上數(shù)2,從標記上2的點開始按順時針方向數(shù)到第三個點標記上數(shù)3,繼續(xù)這個過程直到1,2,3,…,2012都被標記到點上,圓周上這些點中有些可能會標記上不止一個數(shù),在標記上2012的那一點上的所有標記的數(shù)中最小的是
12
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)設x1、x2是關于x的方程x2+mx+
1+m2
=0
的兩個不相等的實數(shù)根,那么過兩點A(x1,
x
2
1
)
B(x2,
x
2
2
)
的直線與圓x2+y2=1的位置關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)設雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長為2
3
,漸近線方程是y=±
3
x
,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
OA
OB

(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)將邊長分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個、第2個、…、第n個陰影部分圖形.容易知道第1個陰影部分圖形的周長為8.設前n個陰影部分圖形的周長的平均值為f(n),記數(shù)列{an}滿足an=
f(n),當n為奇數(shù)
f(an-1) ,當n為偶數(shù)

(1)求f(n)的表達式;
(2)寫出a1,a2,a3的值,并求數(shù)列{an}的通項公式;
(3)記bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范圍.

查看答案和解析>>

同步練習冊答案