14.成都西博會期間,某高校有12名志愿者參加服務(wù)工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,則開幕式當(dāng)天不同的排班種數(shù)為( 。
A.$C_{12}^4C_8^4C_4^4$B.$A_{12}^4A_8^4A_4^4$
C.$\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$D.$C_{12}^4C_8^4C_4^4A_3^3$

分析 根據(jù)題意,分2步進行分析:①、將12名志愿者平均分成3組,每組4人,②、將分好的三組全排列,對應(yīng)早、中、晚三班,求出每一步的情況數(shù)目,由分步計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,分2步進行分析:
①、將12名志愿者平均分成3組,每組4人,有$\frac{{C}_{12}^{4}{C}_{8}^{4}{C}_{4}^{4}}{{A}_{3}^{3}}$種分法,
②、將分好的三組全排列,對應(yīng)早、中、晚三班,有A33種情況,
則開幕式當(dāng)天有$\frac{{C}_{12}^{4}{C}_{8}^{4}{C}_{4}^{4}}{{A}_{3}^{3}}$×A33=${C}_{12}^{4}{C}_{8}^{4}{C}_{4}^{4}$種不同的排班方法;
故選:A.

點評 本題考查排列、組合的應(yīng)用,計算12人的分組時要用到平均分組公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項和為Sn
(1)求an及Sn
(2)求數(shù)列$\{\frac{1}{{a}_{n}{a}_{n+1}}\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xoy中,直線${C_1}:\sqrt{3}x+y-4=0$,曲線${C_2}:\left\{\begin{array}{l}x=cosφ\\ y=1+sinφ\end{array}\right.(φ$為參數(shù)),以以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系.
(I)求C1,C2的極坐標(biāo)方程;
(II)若曲線C3的極坐標(biāo)方程為$θ=α(ρ>0,0<α<\frac{π}{2})$,且曲線C3分別交C1,C2于點A,B兩點,求$\frac{OB}{OA}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知橢圓的中心在原點,焦點在x軸上,離心率為$\frac{{\sqrt{3}}}{2}$,且經(jīng)過點M(2,1).平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A,B兩個不同點
(1)求橢圓的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,直三棱柱ABC-A1B1C1的體積為V,點P、Q分別在側(cè)棱A A1和C C1上,AP=C1Q,則多面體A1B1C1-PBQ的體積為(  )
A.$\frac{3V}{4}$B.$\frac{2V}{3}$C.$\frac{V}{2}$D.$\frac{V}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(2,1),求:
(1)($\overrightarrow{a}$+2$\overrightarrow$)•$\overrightarrow$及|$\overrightarrow{a}$-$\overrightarrow$|的值;
(2)$\overrightarrow{a}$與$\overrightarrow$夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項和為Sn,a1=1,且對任意正整數(shù)n,滿足2an+1+Sn-2=0.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.拋物線頂點在原點,焦點在y軸上,其上一點P(m,-1)到焦點距離為5,則拋物線的標(biāo)準(zhǔn)方程為(  )
A.x2=8yB.x2=-8yC.x2=16yD.x2=-16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等比數(shù)列{an}中a9+a10=a(a≠0),a19+a20=b(b≠0),則a99+a100=(  )
A.$\frac{b^9}{a^8}$B.${({\frac{a}})^9}$C.$\frac{{{b^{10}}}}{a^9}$D.${({\frac{a}})^{10}}$

查看答案和解析>>

同步練習(xí)冊答案