【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設污水凈化管道(是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口的中點,分別落在線段上.已知米,米,記

(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;

(2)若,求此時管道的長度;

(3)當取何值時,污水凈化效果最好?并求出此時管道的長度.

【答案】(1),.(2) 米 (3)時,污水凈化效果最好,此時管道的長度為

【解析】

根據(jù)直角三角形表示,,即得結果,根據(jù)同角三角函數(shù)關系求得,即得結果,利用同角三角函數(shù)關系,將函數(shù)轉(zhuǎn)化為一元函數(shù),根據(jù)單調(diào)性得結果.

解:,

由于,

所以,所以.所以

時,,

,設,則,

所以.由于,所以

由于上單調(diào)遞減,

所以當,即時,L取得最大值

答:當時,污水凈化效果最好,此時管道的長度為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+bx+b) (b∈R)
(1)當b=4時,求f(x)的極值;
(2)若f(x)在區(qū)間(0, )上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班名同學的數(shù)學小測成績的頻率分布表如圖所示,其中,且分數(shù)在的有人.

(1)求的值;

(2)若分數(shù)在的人數(shù)是分數(shù)在的人數(shù)的,求從不及格的人中任意選取3人,其中分數(shù)在50分以下的人數(shù)為,求的數(shù)學期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問72名不同性別的大學生在購買食物時是否看營養(yǎng)說明,得到如下列聯(lián)表:

總計

讀營養(yǎng)說明

16

28

44

不讀營養(yǎng)說明

20

8

28

總計

36

36

72

(1)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認為性別和是否看營養(yǎng)說明有關系呢?

(2)從被詢問的28名不讀營養(yǎng)說明的大學生中,隨機抽取2名學生,求抽到女生人數(shù)

的分布列及數(shù)學期望.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若,時,有成立

1判斷上的單調(diào)性,并證明;

2解不等式:

3對所有的恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中,若、、的三條邊長,則下列結論:①對于一切都有;②存在使、、不能構成一個三角形的三邊長;③為鈍角三角形,存在,使,其中正確的個數(shù)為______

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn),M,N分別是棱AB,AD,A1B1 , A1D1的中點,點P,Q分別在棱DD1 , BB1上移動,且DP=BQ=λ(0<λ<2)

(1)當λ=1時,證明:直線BC1∥平面EFPQ;
(2)是否存在λ,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對應法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點,m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結論的序號:_____.

查看答案和解析>>

同步練習冊答案