設(shè)函數(shù)f(x)=2sin(
π
2
x+
π
5
),若對(duì)一切x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是
 
考點(diǎn):三角函數(shù)的最值,三角函數(shù)的周期性及其求法
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)題意可得:f(x1)=-1,f(x2)=1,x1,x2相鄰時(shí),|x1-x2|最小,所以找相鄰的x1,x2即可.
解答: 解:由題意知:f(x1)=-1,f(x2)=1;
∵求|x1-x2|的最小值
∴找相鄰的x1,x2即可.
∴令
π
2
x1+
π
5
=-
π
2
π
2
x2+
π
5
=
π
2
解得:x1=-
7
5
,x2=
3
5
;
∴|x1-x2|=|-
7
5
-
3
5
|
=2
故答案是:2.
點(diǎn)評(píng):分析出找相鄰的x1,x2是求解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=3-i,z2=i(i是虛數(shù)單位),則
.
z1
z2
的虛部為( 。
A、-3B、-3iC、3D、3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某調(diào)酒師把濃度分別為a和b(a>b)的兩瓶均為300毫升的酒(分別記為A瓶液體、B瓶液體)進(jìn)行混合.先把100毫升的A瓶液體倒入B瓶進(jìn)行充分混合,然后再把100毫升的B瓶液體倒入A瓶進(jìn)行充分混合,這樣稱(chēng)為一次操作,依此類(lèi)推.
(Ⅰ)設(shè)經(jīng)過(guò)n次操作后,A瓶液體與B瓶液體的濃度之差為cn,試寫(xiě)出c1,c2及數(shù)列{cn}的通項(xiàng)公式;
(Ⅱ)當(dāng)a=70%,b=10%時(shí),需經(jīng)過(guò)多少次操作后才能使兩瓶酒的濃度之差小于1%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P到兩點(diǎn)(0,-
3
)(0,
3
)的距離之和為4.
(1)求點(diǎn)P的軌跡方程C
(2)設(shè)直線y=kx+1與C交與A,B兩點(diǎn),問(wèn)K為何值時(shí),
.
OA
.
OB
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4),設(shè)
a
=
AB
,
b
=
AC

(1)設(shè)|
c
|=3,
c
BC
共線,求
c
;
(2)若k
a
+
b
與k
a
-2
b
互相垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,AB=2,∠BAD=120°,PA⊥平面ABCD,M,N分別是BC,PC的中點(diǎn).
(Ⅰ)證明:AM⊥平面PAD;
(Ⅱ)若H為∠ADH=45°上的動(dòng)點(diǎn),PA=2與平面PA⊥所成最大角的正切值為
6
2
,求二面角M-AN-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C點(diǎn)在圓O直徑BE的延長(zhǎng)線上,CA切圓O于A點(diǎn),∠ACB的平分線分別交AE、AB于點(diǎn)F、D.則∠ADF的度數(shù)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log3(x-3),若實(shí)數(shù)m,n滿(mǎn)足f(m)+f(3n)=2則m+n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是首項(xiàng)為a1、公比q(q≠1)為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn,且有5S2=4S4,設(shè)bn=q+Sn
(1)求q的值;
(2)若數(shù)列{bn}是等比數(shù)列,求出a1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案