求下列函數(shù)的值域:
(1)y=2x-
x-1

(2)y=
x-1
x+1
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,需要注意x的取值范圍.
解答: 解:(1)換元法:令t=
x-1
,(t≥0),
則y=2x-
x-1
=2t2+2-t=2(t-
1
4
2+
15
8
15
8
,當(dāng)t=
1
4
時(shí)取等號(hào),故其值域?yàn)閇
15
8
,+∞),
(2)換元法:令t=
x-1
,(t≥0),
 則y=
x-1
x+1
=
t
t2+2
,
當(dāng)t=0時(shí),y=0,
當(dāng)t>0時(shí),y═
t
t2+2
=
1
t+
2
t
1
2
t•
2
t
=
2
4
,當(dāng)t=
2
時(shí)取等號(hào),故其值域?yàn)閇0,
2
4
]
點(diǎn)評(píng):本題考查了換元法求函數(shù)的值域,考生要重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線xcosθ+ysinθ-1=0與圓(x-1)2+(y-sinθ)2=
1
16
相切,且θ為銳角,則該直線的傾斜角是( 。
A、
3
B、
6
C、
π
6
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圖中一組函數(shù)圖象,它們分別與其后所列的一個(gè)現(xiàn)實(shí)情境相匹配:

情境A:一份30分鐘前從冰箱里取出來,然后被防到微波爐里加熱,最后放到餐桌上的食物的溫度(將0時(shí)刻確定為食物從冰箱里被取出來的那一刻)
情境B:一個(gè)1970年生產(chǎn)的留聲機(jī)從它剛開始的售價(jià)到現(xiàn)在的價(jià)值(它被一個(gè)愛好者收藏,并且被保存的很好);
情境C:從你剛開始放水洗澡,到你洗完后把它排掉這段時(shí)間浴缸里水的高度;
情境D:根據(jù)乘客人數(shù),每輛公交車一趟營運(yùn)的利潤.
其中與情境A、B、C、D對(duì)應(yīng)的圖象正確的序號(hào)是( 。
A、①②③④B、②①③④
C、①②④③D、①③④②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)的圖象:
(1)y=(-1)x,x∈{0,1,2,3};
(2)y=
(x+
1
2
)0
|x|-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在長方體ABCD-A′B′C′D′中,點(diǎn)E為棱上CC′上任意一點(diǎn),AB=BC=2,CC′=1.
(1)求證:平面ACC′A′⊥平面BDE;
(2)若點(diǎn)P為棱C′D′的中點(diǎn),點(diǎn)E為棱CC′的中點(diǎn),求三棱錐P-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100],學(xué)校規(guī)定上學(xué)所需時(shí)間不小于1小時(shí)的學(xué)生可以申請(qǐng)?jiān)趯W(xué)校住宿.
(Ⅰ)求頻率分布直方圖中x的值;
(Ⅱ)根據(jù)頻率分布直方圖估計(jì)樣本數(shù)據(jù)的中位數(shù);
(Ⅲ)用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,從可以住宿的學(xué)生當(dāng)中隨機(jī)抽取3人,記ξ為其中上學(xué)所需時(shí)間不低于80分鐘的人數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
m
n
,其中向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)若a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C對(duì)應(yīng)的邊長,f(
A
2
)=3,且a=2
3
,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:P為△ABC內(nèi)一點(diǎn),滿足
PA
+
PB
+
PC
=
0
,且
PA
PB
的夾角等于135°,
PB
PC
的夾角等于120°,若|
PC
|=4.
(1)求|
PA
|;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有4人去旅游,旅游地點(diǎn)有A、B兩個(gè)地方可以選擇.但4人都不知道去哪里玩,于是決定通過擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時(shí)去A地,擲出其他的數(shù)則去B地;
(1)求這4個(gè)人中恰好有1個(gè)人去A地的概率;
(2)求這4個(gè)人中去A地的人數(shù)大于去B地的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去A、B兩地的人數(shù),記ξ=|X•Y|.求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案