已知曲線C:x2y+xy2=1,則曲線C關(guān)于對(duì)稱的序號(hào)有( 。
(1)x軸對(duì)稱;(2)y軸對(duì)稱;(3)原點(diǎn)對(duì)稱;(4)直線y=x對(duì)稱;(5)直線y=-x對(duì)稱.
分析:設(shè)(a,b)點(diǎn)在曲線上,則(a,b)點(diǎn)滿足方程x2y+xy2=1,然后判定(a,-b),(-a,b),(-a,-b),(b,a),(-b,-a)是否在曲線C上,從而得到結(jié)論.
解答:解:若(a,b)點(diǎn)在曲線上則a2b+ab2=1
令x=a,y=-b,則-a2b+ab2=1,故點(diǎn)(a,-b)不在曲線C上,即不關(guān)于x軸對(duì)稱;
令x=-a,y=b,則a2b-ab2=1,故點(diǎn)(-a,b)不在曲線C上,即不關(guān)于y軸對(duì)稱;
令x=-a,y=-b,則-a2b-ab2=1,故點(diǎn)(-a,-b)不在曲線C上,即不關(guān)于原點(diǎn)對(duì)稱;
令x=b,y=a,則ab2+a2b=1,故點(diǎn)(b,a)在曲線C上,即關(guān)于直線y=x對(duì)稱;
令x=-b,y=-a,則-ab2-a2b=1,故點(diǎn)(-b,-a)不在曲線C上,即不關(guān)于直線y=-x對(duì)稱.
故選C.
點(diǎn)評(píng):本題主要考查的知識(shí)點(diǎn)是曲線的對(duì)稱性,當(dāng)(a,b)點(diǎn)在曲線上時(shí),(-a,-b)點(diǎn)也在曲線上,則曲線關(guān)于原點(diǎn)對(duì)稱;當(dāng)(a,b)點(diǎn)在曲線上時(shí),(-a,b)點(diǎn)也在曲線上,則曲線關(guān)于y軸對(duì)稱;當(dāng)(a,b)點(diǎn)在曲線上時(shí),(a,-b)點(diǎn)也在曲線上,則曲線關(guān)于x軸對(duì)稱;當(dāng)(a,b)點(diǎn)在曲線上時(shí),(b,a)點(diǎn)也在曲線上,則曲線關(guān)于直線x-y=0對(duì)稱;當(dāng)(a,b)點(diǎn)在曲線上時(shí),(-b,-a)點(diǎn)也在曲線上,則曲線關(guān)于直線x-y=0對(duì)稱,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知曲線C:x2y+xy2=1,則曲線C關(guān)于對(duì)稱的序號(hào)有
(1)x軸對(duì)稱;(2)y軸對(duì)稱;(3)原點(diǎn)對(duì)稱;(4)直線y=x對(duì)稱;(5)直線y=-x對(duì)稱.


  1. A.
    (3)(4)
  2. B.
    (1)(5)
  3. C.
    (4)
  4. D.
    (2)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線C:x2y+xy2=1,則曲線C關(guān)于對(duì)稱的序號(hào)有(  )
(1)x軸對(duì)稱;(2)y軸對(duì)稱;(3)原點(diǎn)對(duì)稱;(4)直線y=x對(duì)稱;(5)直線y=-x對(duì)稱.
A.(3)(4)B.(1)(5)C.(4)D.(2)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年湖北省武漢市硚口區(qū)高三數(shù)學(xué)交流試卷1(文理合卷)(解析版) 題型:選擇題

已知曲線C:x2y+xy2=1,則曲線C關(guān)于對(duì)稱的序號(hào)有( )
(1)x軸對(duì)稱;(2)y軸對(duì)稱;(3)原點(diǎn)對(duì)稱;(4)直線y=x對(duì)稱;(5)直線y=-x對(duì)稱.
A.(3)(4)
B.(1)(5)
C.(4)
D.(2)(5)

查看答案和解析>>

同步練習(xí)冊(cè)答案