【題目】已知橢圓的左頂點(diǎn),右焦點(diǎn)分別為,右準(zhǔn)線為

(1)若直線上不存在點(diǎn),使為等腰三角形,求橢圓離心率的取值范圍;

(2)在(1)的條件下,當(dāng)取最大值時(shí),點(diǎn)坐標(biāo)為,設(shè)是橢圓上的三點(diǎn),且,求:以線段的中心為原點(diǎn),過兩點(diǎn)的圓方程.

【答案】(1) .

(2) .

【解析】試題分析:(1) 設(shè)直線軸的交點(diǎn)是,依題意,把條件代數(shù)化,即可解得范圍;(2)由題意易得橢圓方程是:,設(shè) ,則 ,, 因?yàn)?/span>是橢圓C上一點(diǎn),所以得到,因?yàn)閳A過兩點(diǎn), 所以線段的中點(diǎn)的坐標(biāo)為 ,從而求得圓的方程.

試題解析:

(1)設(shè)直線軸的交點(diǎn)是,依題意

,,,,

(2)當(dāng)時(shí),,故

所以,

橢圓方程是:

設(shè) ,則 ,

,

因?yàn)?/span>是橢圓C上一點(diǎn),所以

………①

因?yàn)閳A過兩點(diǎn), 所以線段的中點(diǎn)的坐標(biāo)為

………②

由①和②得

,

所以圓心坐標(biāo)為

故所求圓方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PD底面ABCD,底面ABCD是邊長為a的正方形,且PD=a.

(1)求四棱錐P﹣ABCD的體積;

(2)若E為PC中點(diǎn),求證:PA平面BDE;

(3)求直線PB與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右焦點(diǎn)且傾斜角為的直線與圓相切,則該雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的定義域?yàn)?/span>,滿足對任意,有.則稱為“形函數(shù)”;若函數(shù)定義域?yàn)?/span>,恒大于0,且對任意,恒有,則稱為“對數(shù)形函數(shù)”.

1)當(dāng)時(shí),判斷是否是“形函數(shù)”,并說明理由;

2)當(dāng)時(shí),判斷是否是“對數(shù)形函數(shù)”,并說明理由;

3)若函數(shù)形函數(shù),且滿足對任意都有,問是否是“對數(shù)形函數(shù)”?請加以證明,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秸稈還田是當(dāng)今世界上普通重視的一項(xiàng)培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時(shí)還有增肥增產(chǎn)作用.某農(nóng)機(jī)戶為了達(dá)到在收割的同時(shí)讓秸稈還田,花元購買了一臺(tái)新型聯(lián)合收割機(jī),每年用于收割可以收入萬元(已減去所用柴油費(fèi));該收割機(jī)每年都要定期進(jìn)行維修保養(yǎng),第一年由廠方免費(fèi)維修保養(yǎng),第二年及以后由該農(nóng)機(jī)戶付費(fèi)維修保養(yǎng),所付費(fèi)用(元)與使用年數(shù)的關(guān)系為:,已知第二年付費(fèi)元,第五年付費(fèi)元.

(1)試求出該農(nóng)機(jī)戶用于維修保養(yǎng)的費(fèi)用(元)與使用年數(shù)的函數(shù)關(guān)系;

(2)這臺(tái)收割機(jī)使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費(fèi)用-購買機(jī)械費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的展開式中,第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列

1的值;

2此展開式中是否有常數(shù)項(xiàng),為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從集合的所有非空子集中,等可能地取出個(gè).

(1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;

(2)若,記所取子集的元素個(gè)數(shù)之差為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為2.

(1)求函數(shù)的解析式,并求它的對稱中心的坐標(biāo);

(2)先將函數(shù)保持橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>)倍,再將圖象向左平移)個(gè)單位,得到的函數(shù)為偶函數(shù).若對任意的,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在D上的函數(shù)fx)如果滿足:對任意xD,存在常數(shù)M0,都有|fx)|≤M成立,則稱fx)是D上的有界函數(shù),其中M稱為函數(shù)fx)的一個(gè)上界.已知函數(shù),

1)求函數(shù)fx)在區(qū)間上的所有上界構(gòu)成的集合;

2)若函數(shù)gx)在[0,+∞)上是以7為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案