如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.

(1)求證DM∥平面APC;
(2)求證平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.
(3)

試題分析:
(1)從平面內(nèi)找一條與平行的直線,根據(jù)題意可知, 的中位線,有,則證明.
(2)要證面面垂直得有線面垂直,根據(jù)題意可證,從而得到,進(jìn)而有,最終可證.
(3)首先得做出二面角的平面角,所以過,垂足為,連接,猜想為二面角的平面角,根據(jù)二面角的平面角定義,只需證明 ,顯然根據(jù)已知以及(1)中的結(jié)論,可證平面,則可證明猜想.將放入中,即可求其正弦值.
證明中點, 中點,
中,有,
,
 ∥平面                                       
(2)證明為正三角形,且中點,
又由(1)知, .             
                         
                             
                         
                   
(3)

,垂足為,連接, 
中點,
,又由(2)知平面
,平面,
平面,                         
為二面角的平面角         
,中點,,又由(2)平面,∴,
 ,中點,為正三角形,
,
,

∴在
即二面角的正弦值為.          
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點,動點F在側(cè)棱CC1上,且不與點C重合.
(1)當(dāng)CF=1時,求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等腰梯形ABCD中,,,N是BC的中點.如圖所示,將梯形ABCD繞AB逆時針旋轉(zhuǎn),得到梯形

(1)求證:平面;
(2)求證:平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖的幾何體中,四邊形為正方形,四邊形為等腰梯形,,,,
(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是圓的直徑,點是圓上異于的點,直線 分別為的中點。

(1)記平面與平面的交線為,試判斷與平面的位置關(guān)系,并加以說明;
(2)設(shè)(1)中的直線與圓的另一個交點為,且點滿足,記直線
平面所成的角為異面直線所成的銳角為,二面角的大小為
①求證:
②當(dāng)點為弧的中點時,,求直線與平面所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)b,c表示兩條直線,α,β表示兩個平面,則下列命題正確的是(  )
A.若b?α,c∥α,則c∥b
B.若b?α,b∥c,則c∥α
C.若c?α,α⊥β,則c⊥β
D.若c?α,c⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直二面角α-l-β,點A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=2,AC=BD=1,則D到平面ABC的距離等于(   )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體ABCD﹣A1B1C1D1中,異面直線A1B與B1C所成角的大小為 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知三棱柱的側(cè)棱在下底面的射影平行,若與底面所成角為,且,則的余弦值為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案