5.已知函數(shù)f(x)=2sinxcosx+2cos2x-1,求y=f(x)的周期和最值.

分析 運用二倍角公式將函數(shù)進行化簡,結(jié)合三角函數(shù)的圖象和性質(zhì)即可求函數(shù)y=f(x)的周期和最值.

解答 解:由題意得:
f(x)=2sinxcosx+2cos2x-1
=sin2x+cos2x
=$\sqrt{2}sin(2x+\frac{π}{4})$
∴$T=\frac{2π}{ω}=π$,最大值為$\sqrt{2}$,最小值為$-\sqrt{2}$.
故y=f(x)的周期為π,最大值為$\sqrt{2}$,最小值為-$\sqrt{2}$.

點評 本題主要考查三角函數(shù)的二倍角公式和化一公式,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知α∈[$\frac{π}{4}$,π],β∈[π,$\frac{3π}{2}$],sin2α=$\frac{\sqrt{5}}{5}$,sin(β-α)=$\frac{\sqrt{10}}{10}$.
(1)求cos2α的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a為實數(shù),函數(shù)f(x)=x2-|x2-ax-2|在區(qū)間(-∞,-1)和(2,+∞)上單調(diào)遞增,則a的取值范圍為( 。
A.[1,8]B.[3,8]C.[1,3]D.[-1,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知:△ABC的三條邊分別為a,b,c.求證:$\frac{a+b}{1+a+b}$>$\frac{c}{1+c}$;
(2)已知a、b、c∈R+,a+b+c=1,求證$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知sinx=-$\frac{1}{4}$,則cos2x=(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{{\sqrt{15}}}{4}$D.-$\frac{{\sqrt{15}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.-300°化成弧度制為( 。
A.$\frac{10π}{3}$B.$-\frac{5π}{6}$C.$-\frac{5π}{3}$D.$\frac{7π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)是(-∞,+∞)上的減函數(shù),則不等式f(2)<f($\frac{1}{x}$)的解集是(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(-∞,0)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列各式的值:
(1)cos40°sin20°+cos20°sin40°
(2)cos$\frac{π}{8}$•sin$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={1,2,3,4},則集合B={x•y|x∈A,y∈A}中元素的個數(shù)是( 。
A.8B.9C.10D.12

查看答案和解析>>

同步練習(xí)冊答案