解:(1)設(shè)y=f(x)=x
α,代入點(diǎn)(2,4)
得4=2
α,
∴α=2,
∴f(x)=x
2(2)∵f(x)=x
2 ∴當(dāng)x≥0時(shí)g(x)=x
2-2x
設(shè)x<0,則-x>0,∵y=g(x)是R上的偶函數(shù)
∴f(x)=f(-x)=(-x)
2-2(-x)=x
2+2x
即當(dāng)x<0時(shí),f(x)=x
2+2x
圖象如右圖所示
(3)函數(shù)y=|g(x)|的圖象如圖
由圖象知,函數(shù)y=|g(x)|的單調(diào)遞減區(qū)間是:(-∞,-2],[-1,0],[1,2]
分析:(1)利用待定系數(shù)法,設(shè)f(x)=x
α,代入點(diǎn)(2,4),解指數(shù)方程即可得α值;
(2)利用偶函數(shù)的定義,設(shè)x<0,則-x>0,f(x)=f(-x),再代入已知解析式即可得x<0時(shí),函數(shù)y=g(x)的解析式,最后利用對稱性畫出函數(shù)圖象即可;
(3)先畫出函數(shù)y=|g(x)|的圖象,即將函數(shù)y=g(x)的圖象x軸下面的部分翻到上面,再根據(jù)圖象寫出此函數(shù)的單調(diào)減區(qū)間即可
點(diǎn)評:本題考查了冪函數(shù)的定義,待定系數(shù)法求函數(shù)解析式,利用函數(shù)的對稱性求函數(shù)解析式的方法,函數(shù)圖象的畫法和函數(shù)圖象的翻折變換