分析 解:(Ⅰ)直接利用賦值法求得
(Ⅱ)由f(x)是[-1,1]上的奇函數(shù)得f(x+$\frac{1}{2}$)<f(1-x),又f(x)在[-1,1]上遞增$\left\{\begin{array}{l}{-1≤x+\frac{1}{2}≤1}\\{-1≤1-x≤1}\\{x+\frac{1}{2}<1-x}\end{array}\right.$
解答 解:(Ⅰ)f(4)=f(2×2)=f(2)+f(2)=2
∴2f(2)=2⇒f(2)=1
又∵f(2)=f($\sqrt{2}•\sqrt{2}$)=f($\sqrt{2}$)+f($\sqrt{2}$)═
∴2f($\sqrt{2}$)=1⇒f($\sqrt{2}$)=$\frac{1}{2}$
(Ⅱ)由f(x)是[-1,1]上的奇函數(shù)得f(x+$\frac{1}{2}$)<f(1-x)
又f(x)在[-1,1]上遞增
$\left\{\begin{array}{l}{-1≤x+\frac{1}{2}≤1}\\{-1≤1-x≤1}\\{x+\frac{1}{2}<1-x}\end{array}\right.$解得$0≤x<\frac{1}{4}$
∴不等式解集為[0,$\frac{1}{4}$)
點評 本題考查了抽象函數(shù)的賦值法,及抽象函數(shù)不等式的解法,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要 | B. | 充分不必要 | ||
C. | 必要不充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)是奇函數(shù),函數(shù)g(x)是偶函數(shù) | |
B. | 函數(shù)f(x)不是奇函數(shù),函數(shù)g(x)是偶函數(shù) | |
C. | 函數(shù)f(x)是奇函數(shù),函數(shù)g(x)不是偶函數(shù) | |
D. | 函數(shù)f(x)不是奇函數(shù),函數(shù)g(x)不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {2,4,5} | C. | {1,2,3,4} | D. | {1,2,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 39 | B. | -39 | C. | 12 | D. | -12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π | B. | 3π | C. | $4\sqrt{3}π$ | D. | 12π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com