已知不等式組
x+y≤1,
x-y≥-1,
y≥0
,表示的平面區(qū)域?yàn)镸,若直線y=kx-2k與平面區(qū)域M有公共點(diǎn),則k的取值范圍是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:數(shù)形結(jié)合
分析:由約束條件作出可行域,由直線系方程求得直線y=kx-2k所過(guò)定點(diǎn),數(shù)形結(jié)合求得定點(diǎn)與可行域內(nèi)動(dòng)點(diǎn)連線的斜率的范圍,則答案可求.
解答: 解:由約束條件
x+y≤1
x-y≥-1
y≥0
作出可行域如圖,

直線y=kx-2k過(guò)定點(diǎn)P(2,0),C(0,1),
kPC=
1-0
0-2
=-
1
2

∴要使直線y=kx-2k與平面區(qū)域M有公共點(diǎn),
則k的取值范圍是[-1,0].
故答案為:[-1,0].
點(diǎn)評(píng):本題考查了直線系方程,考查了直線的斜率,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x的圖象過(guò)點(diǎn)(a+2,18).
(1)求g(x)=3ax-4x的解析式;
(2)若函數(shù)g(x)的定義域?yàn)閇0,1],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,滿(mǎn)足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令Cn=
2
Sn
,n為奇數(shù)
bn,n為偶數(shù)
設(shè)數(shù)列{cn}的前n項(xiàng)和Tn,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,底面ABCD是正方形,E是PA的中點(diǎn),在平面PAD內(nèi)過(guò)點(diǎn)E且與平面PBC平行的直線的條數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有2本相同美術(shù)書(shū),3本相同圖畫(huà)書(shū),抽4本分給4個(gè)人,有幾種分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖為函數(shù)f(x)=t+logax的圖象(a,t均為實(shí)常數(shù)),則下列結(jié)論正確的是 (  )
A、0<a<1,t<0
B、0<a<1,t>0
C、a>1,t<0
D、a>1,t>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一條光線從點(diǎn)A(-4,-2)射出,到直線y=x上的B點(diǎn)后被直線y=x反射到y(tǒng)軸上的C點(diǎn),又被y軸反射,這時(shí)反射光線恰好過(guò)點(diǎn)D(-1,6).求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x-2a|+|x+1|,a∈R.
(1)當(dāng)a=1時(shí),解不等式f(x)<5;
(2)若存在xo∈R,使得f(xo)<3,成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=a,a2=t(常數(shù)t>0),Sn是其前n項(xiàng)和,且Sn=
n(an-a1)
2

(I)試確定數(shù)列{an}是否為等差數(shù)列,若是,求出其通項(xiàng)公式;若不是,說(shuō)明理由;
(Ⅱ)令bn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,證明:2n<b1+b2+…+bn<2n+3(n∈N*)

查看答案和解析>>

同步練習(xí)冊(cè)答案